You are here

Light Water Reactor Sustainability Technical Documents

April 30, 2013
LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan

To address the challenges associated with pursuing commercial nuclear power plant operations beyond 60 years, the U.S. Department of Energy’s (DOE) Office of Nuclear Energy (NE) and the Electric Power Research Institute (EPRI) have established separate but complementary research and development programs: DOE-NE’s Light Water Reactor Sustainability (LWRS) Program and EPRI’s Long-Term Operations (LTO) Program.

April 30, 2013
Light Water Reactor Sustainability Program - Integrated Program Plan

The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U. S. Department of Energy (DOE), performed in close collaboration and cooperation with related industry R&D programs.

December 30, 2012
Online Monitoring Technical Basis and Analysis Framework for Emergency Diesel Generators—Interim Report for FY 2013

The Light Water Reactor Sustainability Program is a research, development, and deployment program sponsored by the U.S. Department of Energy Office of Nuclear Energy. The program is operated in collaboration with the Electric Power Research Institute’s (EPRI’s) research and development efforts in the Long-Term Operations Program. The Long-Term Operations Program is managed as a separate technical program operating in the Plant Technology Department of the EPRI Nuclear Power Sector with the guidance of an industry advisory Integration Committee.

September 30, 2012
Low-temperature Swelling in LWR Internal Components: Current Data and Modeling Assessment

Recent experimental observations have made it clear that cavity formation can occur in light-water reactor internal components fabricated from austenitic stainless during the course of their service life. In order to assess the potential for cavity swelling in these components at end-of-life doses, it is necessary to develop a validated computational model that incorporates the relevant physical mechanisms and accounts for recent experiment data. Such a modeling activity is underway; the model development and some preliminary results are described.

September 30, 2012
Nondestructive Examination (NDE) Detection and Characterization of Degradation Precursors

The U.S. Department of Energy’s (DOE) Light Water Reactor Sustainability (LWRS) Program is developing the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components (SSCs) as they age in environments associated with long-term operations (LTO) of operating commercial nuclear power reactors.

September 30, 2012
Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap

Materials issues are a key concern for the existing nuclear reactor fleet as material degradation can lead to increased maintenance, increased downtown, and increased risk. Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. Additionally, new mechanisms of materials degradation are also possible. The purpose of the

September 30, 2012
Evaluation of Computer- Based Procedure System Prototype

This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S.

September 30, 2012
Online Monitoring Technical Basis and Analysis Framework for Large Power Transformers; Interim Report for FY 2012

The Light Water Reactor Sustainability Program is a research, development, and deployment program sponsored by the U.S. Department of Energy Office of Nuclear Energy. The program is operated in collaboration with the Electric Power Research Institute’s (EPRI’s) research and development efforts in the Long-Term Operations (LTO) Program. The LTO Program is managed as a separate technical program operating in the Plant Technology Department of the EPRI Nuclear Power Sector with the guidance of an industry advisory Integration Committee.

September 30, 2012
Advanced LWR Nuclear Fuel Cladding System Development Trade-off Study

The LWR Sustainability (LWRS) Program activities must support the timeline dictated by utility life extension decisions to demonstrate a lead test rod in a commercial reactor within 10 years. In order to maintain the demanding development schedule that must accompany this aggressive timeline, the LWRS Program focuses on advanced fuel cladding systems that retain standard UO2 fuel pellets for deployment in currently operating LWR power plants.

September 30, 2012
Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers

This report is a guidance document prepared for the benefit of commercial nuclear power plants’ (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel.

September 30, 2012
Light Water Reactor Sustainability Program: Materials Aging and Degradation Technical Program Plan

Components serving in a nuclear reactor plant must withstand a very harsh environment including extended time at temperature, neutron irradiation, stress, and/or corrosive media. The many modes of degradation are complex and vary depending on location and material. However, understanding and managing materials degradation is a key for the continued safe and reliable operation of nuclear power plants.

September 30, 2012
Summary Report on Industrial and Regulatory Engagement Activities

The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies pathway of the Light Water Reactor Sustainability(LWRS) Program conducts a vigorous engagement strategy with the U.S. nuclear power industry, including the nuclear operating companies, major support organizations, the Nuclear Regulatory Commission (NRC), and suppliers.

September 30, 2012
Light Water Reactor Sustainability (LWRS) Program – R&D Roadmap for Non-Destructive Evaluation (NDE) of Fatigue Damage in Piping

Light water reactor sustainability (LWRS) nondestructive evaluation (NDE) Workshops were held at Oak Ridge National Laboratory (ORNL) during July 30th to August 2nd, 2012. This activity was conducted to help develop the content of the NDE R&D roadmap for the materials aging and degradation (MAaD) pathway of the LWRS program. The workshops focused on identifying NDE R&D needs in four areas: cables, concrete, reactor pressure vessel, and piping.

September 30, 2012
Light Water Reactor Sustainability Program – Non-Destructive Evaluation R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. A workshop was held to gather subject matter experts to develop the NDE R&D Roadmap for Cables. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters.

September 30, 2012
Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

The Department of Energy’s (DOE’s) Light Water Reactor Sustainability (LWRS) Program is a five year effort that works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operation of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging nondestructive evaluation (NDE) methods that support these objectives.

September 30, 2012
Cast Stainless Steel Aging Research Plan

This work plan proposes to build a systematic knowledge base for the thermal aging behavior of cast stainless steels (CASSs) within a limited time of five years. The final output of execution of the plan is expected to provide conclusive predictions for the integrity of the CASS components of LWR power plants during the extended service life up to and beyond 60 years.

August 30, 2012
Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study

Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved.

June 30, 2012
Use Computational Model to Design and Optimize Welding Conditions to Suppress Helium Cracking during Welding

Today, welding is widely used for repair, maintenance and upgrade of nuclear reactor components. As a critical technology to extend the service life of nuclear power plants beyond 60 years, weld technology must be further developed to meet new challenges associated with the aging of the plants, such as control and mitigation of the detrimental effects of weld residual stresses and repair of highly irradiated materials. To meet this goal, fundamental understanding

June 30, 2012
A Proof of Concept: Grizzly, the LWRS Program Materials Aging and Degradation Pathway Main Simulation Tool

Nuclear power currently provides a significant fraction of the United States’ non- carbon emitting power generation. In future years, nuclear power must continue to generate a significant portion of the nation’s electricity to meet the growing electricity demand, clean energy goals, and ensure energy independence. New reactors will be an essential part of the expansion of nuclear power. However, given limits on new builds imposed by economics and industrial capacity, the extended service of the existing fleet will also be required.

June 30, 2012
A Review of Stress Corrosion Cracking/Fatigue Modeling for Light Water Reactor Cooling System Components

In the United States currently there are approximately 104 operating light water reactors. Of these, 69 are pressurized water reactors (PWRs) and 35 are boiling water reactors (BWRs). In 2007, the 104 light-water reactors (LWRs) in the United States generated approximately 100 GWe, equivalent to 20% of total US electricity production. Most of the US reactors were built before 1970 and the initial design lives of most of the reactors are 40 years.

April 30, 2012
Risk Informed Safety Margin Characterization Case Study: Selection of Electrical Equipment To Be Subjected to Environmental Qualification

Reference 1 discussed key elements of the process for developing a margins-based “safety case” to support safe and efficient operation for an extended period. The present report documents (in Appendix A) a case study, carrying out key steps of the Reference 1 process, using an actual plant Probabilistic Risk Assessment (PRA) model.

April 30, 2012
DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program – Joint Research and Development Plan

Nuclear power has contributed almost 20% of the total amount of electricity generated in the United States over the past two decades. High capacity factors and low operating costs make nuclear power plants (NPPs) some of the most economical power generators available. Further, nuclear power remains the single largest contributor (nearly 70%) of non-greenhouse gas-emitting electric power generation in the United States.

March 30, 2012
Letter Report on Metallurgical Examination of the High Fluence RPV Specimens From the Ringhals Nuclear Reactors

Regulations which govern the operation of commercial nuclear power plants require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the irradiated condition, the fracture toughness of the RPV may be severely degraded, with the degree of toughness loss dependent on the radiation sensitivity of the materials. As stated in previous progress reports, the available embrittlement predictive models, e.g.

January 30, 2012
Light Water Reactor Sustainability Program: Integrated Program Plan

Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas- emitting electric power generation in the United States.

October 30, 2011
U.S. Department of Energy Accident Resistant SiC Clad Nuclear Fuel Development

A significant effort is being placed on silicon carbide ceramic matrix composite (SiC CMC) nuclear fuel cladding by Light Water Reactor Sustainability (LWRS) Advanced Light Water Reactor Nuclear Fuels Pathway. The intent of this work is to invest in a high-risk, high-reward technology that can be introduced in a relatively short time. The LWRS goal is to demonstrate successful advanced fuels technology that suitable for commercial development to support nuclear relicensing.