Optimizing Asset Utilization and Operating Efficiency Efficiently

June 20, 2008
Washington DC
Major Findings/Caveats

- Optimizing asset utilization and operating efficiently depends on proper integration of technologies with business processes and associated IT.
- Build metrics, by definition, need to be updated regularly to reflect new technology.
- Build metrics should not be technology prescriptive or result in narrowing technology options for Smart Grid (should be as “technology agnostic” as possible).
- Build metrics need to differentiate between statistics measuring number of deployed widgets/data versus having the widgets/data available for use.
- Focused value metrics are probably more critical, relevant, and meaningful than “build” metrics; however, build metrics could be considered as “leading indicators” of SG.
- Build metrics will be different for transmission, distribution and consumer parts of the “asset utilization and operating efficiently” smart grid characteristic.
- Advanced materials and equipment, local communications and local intelligence are also part of the solution for Smart Grid.
Metrics for Measuring Progress

<table>
<thead>
<tr>
<th>Transmission</th>
<th>Distribution</th>
<th>Consumer</th>
</tr>
</thead>
<tbody>
<tr>
<td>• # of assets deferred and period of deferral (better use of exstg)</td>
<td>• # MW of DG/storage connected to grid as dispatchable asset</td>
<td>• # of smart meters</td>
</tr>
<tr>
<td>• # of MW that are controlled by VOLT-VAR</td>
<td>• % of smart grid enabled switches/reclosers/capacitor banks</td>
<td>• # of customers utilizing real time pricing</td>
</tr>
<tr>
<td>• % of assets with real-time condition monitoring and diagnostics</td>
<td>• % of assets with real-time condition monitoring and diagnostics</td>
<td>• # of MW of dispatchable demand response</td>
</tr>
<tr>
<td>• # of lines with dynamic rating capability</td>
<td>• # of MW that are controlled by VOLT-VAR</td>
<td></td>
</tr>
<tr>
<td>• # miles of line with expanded transmission capacity through advanced</td>
<td>• % of customers connected per automated circuit segment</td>
<td></td>
</tr>
<tr>
<td>materials, e.g., superconductors, FCLs, and composite conductors, etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• # of IEDs (smart sensors) deployed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• % of IEDs with communications that allows it to perform its function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• # of operational IT applications that are integrated</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Metrics Issues (General)

- Need to determine who (organization) is responsible for “owning” the metric (collect, publish)
- How to get data (historical and future) from utility
- Need to identify critical data needed to calculate metric
- Need to define common method to “measure” the parameter
- Need to define division of responsibility for data collection policy → state (distribution) vs Federal (transmission)
- Before selecting communication infrastructure we need to know all smart grid functionalities and technologies that will be implemented

Optimizing Asset Utilization and Operating Efficiency
Crosscutting Metrics (T, D, and C)

of IEDs (smart sensors) deployed

- Issues
 - Easiest to measure
 - Should be used as the baseline
 - What should be the end point
 - Break into categories: 1) asset monitors, 2) power monitors, 3) meters, 4) controllers
 - There will be a different metric for each area of the power system (Transmission, Distribution, and Consumer)
Transmission Metrics (1)

- # of assets deferred and period of deferral
 - This is investment that is deferred while still maintaining the same result (e.g. reliability/performance) through better utilization of existing assets
 - Assets need to be tracked by category (large investment items)
 - Transmission lines
 - Substations
 - Substation transformers

Optimizing Asset Utilization and Operating Efficiency
Transmission Metrics (2)

- % of assets with real time condition monitoring and diagnostics
 - Need to track according to each category of asset
 - Substation transformers
 - Circuit breakers
 - Static Var systems, FACTs devices
 - Capacitor banks, Shunt reactors, series capacitors
 - Transmission lines (e.g. dynamic line rating) - this was listed as a separate index but can be included in this set of indices
 - Surge Arresters
 - Insulators
 - Towers
 - Need to define the criteria that qualifies as real time condition monitoring and diagnostics
 - Communications
 - Diagnostics
 - Notification/alarming
 - Etc.

Optimizing Asset Utilization and Operating Efficiency
Transmission Metrics (3)

- **Amount of active Voltage and Var control on transmission systems**
 - What technologies are included
 - FACTS
 - SVC
 - Series capacitors
 - HVDC
 - What is metric?
 - MVAR of compensation/active control (could include storage)
 - Increase in transmission capacity (MW)
 - % of MW or MVAR that are controlled with advanced equipment

Optimizing Asset Utilization and Operating Efficiency
Transmission Metrics (4)

- # miles of line with technologies for expanded transmission capacity
 - Need to identify examples of technologies that are included in this metric
 - Superconducting cables
 - Composite conductors
 - Distributed transmission line var compensation
 - FCLs mentioned as technology to consider but may not be appropriate for this specific metric - this could be a separate metrics related to advanced fault management
 - Miles of line may not be the best metric for measuring the increased transmission capacity - if we used another metric like the increased capacity itself, we could include technologies like FACTS, FCLs, etc.
Transmission Metrics (5)

- # of IEDs (smart sensors) deployed
 - There are multiple categories of devices
 - Voltages, currents, powers, etc
 - Physical quantities (temperature, pressure, wind, etc.)
 - Analytical quantities (gas analysis, etc.)
 - We should track these by elements of the system that are being monitored/managed
 - Transformers
 - Lines
 - Breakers
- Criteria for including
 - Communications
 - Intelligence?
Transmission Metrics (6)

- Level of Implementation of Extensible Common Information Model and Integration Bus
 - This is an infrastructure metric
 - It needs to be measured with some kind of matrix of the applications that are integrated with interfaces that are standardized
 - EMS/SCADA (%)
 - GIS (%)
 - Asset Management Systems (%)
 - Etc. - need a full list for tracking

Optimizing Asset Utilization and Operating Efficiency
Consumer Metrics (1)

- # of smart meters
 - Percentage of meters with
 - 2-way communications
 - Open protocol (plug and play)
 - Load management capability
 - Home area network enabled
- Sources
 - Utilities/meter companies
Consumer Metrics (2)

- # of customers with dynamic pricing
 - Percentage of meters with
 - Time of use
 - Real time\dynamic pricing (enabled and utilized for both)
 - Sources
 - SECF (??– handwriting unclear….)
 - Utilities

Optimizing Asset Utilization and Operating Efficiency
Consumer Metrics (3)

- # of MW dispatchable
 - Percentage of meters participating
 - Available kW/meter
 - Realized kW/meter
 - Analysis needs:
 - Participation dynamics
 - Factors driving predictability *(or preplatability? Or predilatability? – handwriting unclear)*

- Sources
 - Utilities
Value Metrics (Parking Lot)

<table>
<thead>
<tr>
<th>Deferred generation</th>
<th>System load utilization (peak load/average load)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance costs versus reliability</td>
<td>Unplanned outage rates</td>
</tr>
<tr>
<td>Time to convert data to action</td>
<td>Reduction in reliability violations</td>
</tr>
<tr>
<td>Hours of overtime</td>
<td>$ savings by optimizing and utilization of existing transmission assets</td>
</tr>
<tr>
<td>Transmission grid/line power losses (%) over time</td>
<td>Capital improvement costs versus demand and energy (load factor)</td>
</tr>
<tr>
<td>Joules of energy consumed/joules of energy sold</td>
<td>Increase in capacity/cost ($)</td>
</tr>
<tr>
<td>Improved circuit load factors</td>
<td>Transmission and distribution losses (total energy delivered/total energy generated)</td>
</tr>
<tr>
<td># or cost of assets where upgrades are deferred/eliminated that can be directly attributable to a technology/approach</td>
<td># years of equipment life increase</td>
</tr>
</tbody>
</table>