Stable, high efficiency white phosphorescent organic light-emitting devices (OLED) by reduced molecular dissociation

2017 Building Technologies Office Peer Review
Project Summary

Timeline:
Start date: September 1, 2015
Planned end date: August 31, 2017

Key Milestones
1. Demonstrate a graded blue PHOLED (CIE=0.15, 0.31) in single element or stack with an EQE >15%, LT$_{70}$ > 3,000 hr at L$_0$=1000 nits. - FY2016
2. Demonstrate that introducing an excited state sink into a blue PHOLED can extend its lifetime 2X, showing proof of concept. – FY 2017

Budget:
Total Project $ to Date:
• DOE: $617,989
• Cost Share: $217,131

Total Project $:
• DOE: $1,314,241
• Cost Share: $433,397

Key Partners:

University of Southern California, Mark Thompson, PI
Universal Display Corporation, Mike Hack, PI

Project Outcome:
Pursuing radically new strategies for increasing the lifetime of blue phosphorescent light emitting devices (PHOLEDs).
Purpose and Objectives

Problem Statement: Increase the lifetime of blue PHOLEDs to ultimately achieve the MYPP goal for white OLEDs of $T_{70} = 50,000$ hr at $L_0 = 3000$ nits.

Target Market and Audience: The target market is the OLED lighting industry which currently is very small. With success in extending lifetime and lower cost per lumen, OLEDs can dominate area lighting applications.

Impact of Project: Success will provide the catalyst to launch OLEDs as a large new energy saving and environmentally friendly form of solid-state lighting. OLED lighting products are now entering the marketplace with good efficiencies (60-80 lm/W) and at high price points (~$2K/m²), but with improvements in lifetime, both of these metrics will significantly improve.

1. Project output: Long lived blue and white OLEDs with the blue component targets of $T_{70} = 3000$ hr at $L_0 = 1000$ nits and 15% EQE.
2. Near-term outcomes (during or up to 1yr after project): Meet WOLED MYPP metrics stated above.
Approach

Systematically seek robust dopant and host molecular pairs whose energy gaps allow high efficiency blue PHOLEDs.

Introduce “excited state sinks” co-doped with the host and phosphor in the EML to drastically reduce the lifetime of multiply-excited triplets and/or charge carriers. *Excited state sinks represent an entirely new approach to extending OLED lifetime.*

Implement stacked white emitting PHOLEDs to decrease the drive current while maintaining high efficiency.

Key Issues: Determine routes for molecular dissociation to develop are more robust managers and emission layer materials sets than currently available.

Distinctive Characteristics: Employing hot state managers to totally bypass dissociative reactions in blue PHOLEDs is completely original and strikes at the most fundamental mechanisms leading to degradation.
Progress and Accomplishments (I)

Clearly demonstrated the efficacy of managers to reduce dissociative reactions and significantly improve blue PHOLED lifetime.

<table>
<thead>
<tr>
<th>Device</th>
<th>(J_0) [mA/cm(^2)]</th>
<th>EQE [%]</th>
<th>(V_0) [V]</th>
<th>CIE(^\dagger)</th>
<th>LT90 [hr]</th>
<th>T80 [hr]</th>
<th>(\Delta V(T90)) [V]</th>
<th>(\Delta V(T80)) [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONV</td>
<td>6.7±0.1</td>
<td>8.0±0.1</td>
<td>6.6±0.0</td>
<td>[0.15, 0.28]</td>
<td>27 ± 4</td>
<td>93 ± 9</td>
<td>0.3 ± 0.1</td>
<td>0.4 ± 0.1</td>
</tr>
<tr>
<td>GRAD</td>
<td>5.7±0.1</td>
<td>8.9±0.1</td>
<td>8.0±0.0</td>
<td>[0.16, 0.30]</td>
<td>47 ± 1</td>
<td>173 ± 3</td>
<td>0.6 ± 0.1</td>
<td>0.9 ± 0.1</td>
</tr>
<tr>
<td>S0</td>
<td>5.5±0.1</td>
<td>9.4±0.1</td>
<td>9.2±0.0</td>
<td>[0.16, 0.30]</td>
<td>71 ± 1</td>
<td>226 ± 9</td>
<td>0.9 ± 0.1</td>
<td>1.2 ± 0.1</td>
</tr>
<tr>
<td>S1</td>
<td>5.4±0.1</td>
<td>9.5±0.1</td>
<td>8.8±0.1</td>
<td>[0.16, 0.29]</td>
<td>99 ± 3</td>
<td>260 ± 15</td>
<td>1.2 ± 0.1</td>
<td>1.6 ± 0.1</td>
</tr>
<tr>
<td>S2</td>
<td>5.4±0.1</td>
<td>9.3±0.0</td>
<td>8.9±0.1</td>
<td>[0.16, 0.31]</td>
<td>103 ± 0</td>
<td>285 ± 8</td>
<td>0.7 ± 0.1</td>
<td>1.0 ± 0.1</td>
</tr>
<tr>
<td>S3</td>
<td>5.3±0.1</td>
<td>9.6±0.2</td>
<td>9.0±0.1</td>
<td>[0.16, 0.30]</td>
<td>141 ± 11</td>
<td>334 ± 5</td>
<td>1.1 ± 0.1</td>
<td>1.5 ± 0.2</td>
</tr>
<tr>
<td>S4</td>
<td>5.2±0.1</td>
<td>9.6±0.0</td>
<td>8.6±0.0</td>
<td>[0.16, 0.31]</td>
<td>126 ± 7</td>
<td>294 ± 16</td>
<td>1.0 ± 0.1</td>
<td>1.3 ± 0.1</td>
</tr>
<tr>
<td>S5</td>
<td>5.1±0.1</td>
<td>9.9±0.1</td>
<td>8.6±0.0</td>
<td>[0.16, 0.31]</td>
<td>119 ± 6</td>
<td>306 ± 3</td>
<td>0.9 ± 0.1</td>
<td>1.2 ± 0.1</td>
</tr>
</tbody>
</table>
Progress and Accomplishments (II)

Identified aspects of manager molecules required to achieve very long blue PHOLED lifetimes.

- Triplet (or polaron) energy higher than the lowest triplet of host/dopant (T_1) to prevent loss of radiative efficiency
- Sufficient orbital overlap between manager and vulnerable molecule such that transfer rate $>$ dissociation rate of molecule
- Stable manager molecule
Progress and Accomplishments (III)

Found that managers placed at point of highest exciton density result in longest lived PHOLEDs

a) Dopant: Ir(dmp)_3
 Manager: mer-Ir(pmp)_3

b) Graded EML (GRAD): 18–8 vol%
 Managed EML (M0): 15–5 vol%
 : 3 vol%

U.S. DEPARTMENT OF ENERGY
Energy Efficiency & Renewable Energy
Progress and Accomplishments (IV)

Triplet annihilation model accurately predicts device lifetime
Measurement of exciton density and device lifetime are consistent
Progress and Accomplishments (V)

Identified dissociation products due to triplet-triplet annihilation (consistent with model degradation path) in hosts and dopants

Mass Spec Analysis

- **mCBP Host**
 - m/z = 484.1
 - m/z = 967.3

- **Degraded products**
 - M1
 - m/z = 649.2
 - M2
 - m/z = 802.2
 - M3
 - m/z = 967.3
Progress and Accomplishments (VI)

- Developing new, stable hosts: Triazoles
- Models suggest that tricyclic hosts are more thermally stable and have lower reduction potentials than carbazoles.
- Triazoles give high T_1 energies (> 3.0 eV solution and theory)
 - Addition of bulky functional groups to the molecular core increases the triplet energy in solid state.

![Chemical Structures](image)

![Bar Chart](chart)
Progress and Accomplishments (VII)

Spiro INdoloACridine Hosts (SPINACH) developed as alternative robust host system

- Very small red shift in the solid state, maintaining high T_1 energy.

Phosphorescence Spectra

![Phosphorescence Spectra](image)

- **2meTHF @77K**
- **Solid @77K**

PLQY = 0.97 for 5%FIrpic: Spinach DPh
Progress and Accomplishments (VIII)

Positively determined that increased leakage of charge and excitons not implicated in blue PHOLED degradation.

- Use of sensing layers sensitive means for measuring charge leakage beyond emission zone

Charge balance and exciton leakage responsible for <3% of device degradation.
Impacts

Papers/Patents submitted or presented at international conferences:
9. Organic light emitting diode having a mixed blocking layer, disclosed 9/8/15, U.S. Provisional 62/240,298 filed 10/12/15
10. High-energy excited state manager materials for long-lived blue phosphorescent organic light-emitting diodes, disclosed 10/19/15, U.S. Provisional filed 11/16/15
11. Locally doped excited state manager for long-lived blue PHOLEDs, disclosed 5/16/16, U.S. Provisional filed 5/16/16
12. Triindolotriazine host material to improve OLED performance and lifetime, disclosed 3/12/16, U.S. Provisional to be filed.

Awards/Recognition: Thompson and Forrest awarded the Jun-Ichi Nichizawa Medal of the IEEE for development of phosphorescent OLEDs. Forrest elected to the National Academy of Sciences.

Lessons Learned: The fragility of the Ir-based manager decreases its utility in extending device lifetime since it is exhausted through use.
Project Integration: Team consists of three organizations: University of Michigan (lead), USC and Universal Display Corp. UM and USC personnel have weekly team telecons to review results and plan future steps. UM and USC meet quarterly at UDC for similar results discussions and planning.

Partners, Subcontractors, and Collaborators: University of Michigan: Program lead (Prof. S. Forrest), DOE point of contact. Team of 3 PhD students with tasks in device modeling, fabrication, and lifetime testing. USC (PI: Prof. M. Thompson). Team of 3 PhD students and post-doc with tasks of development of hosts, managers and phosphors. Energetic modeling and library building of potential molecules. UDC: (PI: Dr. M. Hack): Team of 1 PhD to validate lifetime and efficiency data. Build scaled up prototypes.

Communications: Several, listed on previous panel. Notably our team has given keynote, plenary and invited talks at several international conferences and workshops.
Next Steps and Future Plans

• Continue to gather data on degradation products from operation of blue PHOLEDs to determine weakest bonds. Use this to guide development of new materials

• Continue development of new, high triplet energy hosts

• Continue development of new, high triplet energy managers that are more robust against degradation

• Integrate managers in stacked blue and white PHOLEDs to approach DOE MYPP lifetime goals

• Validate lifetime results at UDC
REFERENCE SLIDES
Project Budget: The boxed figures are the original budget with actual expenses in the line below.

Variances: The program is currently underspent by approximately one calendar quarter. Data is being collected to evaluate if the project will be completed within the proposed time or if a no-cost time extension should be considered.

Cost to Date: 47.7% of the budget has been expended to date

Additional Funding: no additional funding required

Budget History

<table>
<thead>
<tr>
<th></th>
<th>9/1/15 – FY 2016 (past)</th>
<th>FY 2017 (current)</th>
<th>– 8/31/17 (planned)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE</td>
<td>$659,915</td>
<td>$163,581</td>
<td>$490,744</td>
</tr>
<tr>
<td>Cost-share</td>
<td>$203,789</td>
<td>$57,402</td>
<td>$172,207</td>
</tr>
<tr>
<td>DOE</td>
<td>$493,004</td>
<td>$124,985</td>
<td>$696,251</td>
</tr>
<tr>
<td>Cost-share</td>
<td>$173,218</td>
<td>$43,914</td>
<td>$260,180</td>
</tr>
</tbody>
</table>
Go/NoGo Decision Task 1:
Demonstrate a graded *blue* PHOLED (CIE=0.15, 0.31) in single element or stack with an external quantum efficiency >15%, $LT_{70} > 3,000$ hours at $L_0=1000$ nits.

Go/NoGo Decision Task 2:
Demonstrate that introducing an excited state sink into a blue PHOLED can extend its lifetime 2X, showing proof of concept.
Project Plan and Schedule

<table>
<thead>
<tr>
<th>Task</th>
<th>Task Title or Subtask Title</th>
<th>Milestone</th>
<th>Mstne #</th>
<th>Milestone Description</th>
<th>Verif. Process</th>
<th>Qtr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stable Blue Phosphors and & Hosts Materials</td>
<td>M</td>
<td>M1.1.1</td>
<td>Model H3 and H3P libraries</td>
<td>ID subst. T>2.7 eV</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Efficient blue emitting phosphors</td>
<td>M</td>
<td>M1.1.2</td>
<td>Prep./charac. Ir(H3) and Ir(H2P)</td>
<td>ID Ir cmplx >2.7eV,PL>70%</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>High energy electron conducting hosts</td>
<td>M</td>
<td>M1.2.1</td>
<td>N-substit. H2P and H3 hosts</td>
<td>ID 6 subst.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M1.2.2</td>
<td>PHOLEDs w N-substitute hosts</td>
<td>Ir-H2P,H3 EQE>12%</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Matched host and dopant materials</td>
<td>M</td>
<td>M1.3.1</td>
<td>Prep. matched host-dopant</td>
<td>PL>70%</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Long-lived Blue PHOLEDs</td>
<td>M</td>
<td>M1.4.1</td>
<td>PHOLEDs, match host-dopant</td>
<td>5000hr/1000cd/m²</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M1.4.2</td>
<td>Optimal dopant gradient for</td>
<td>50Khr/1000cd/m²</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Excited State Sinking to Enhance Lifetime</td>
<td>G/NG</td>
<td>G/NG 1</td>
<td>Blue PHOLED: eff. > 15%, LT70 > 3,000 hr at L0 = 1000 cd/m²</td>
<td>UM/UDC life test</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Development of excited state sinks</td>
<td>M</td>
<td>M2.1.1</td>
<td>Photostab. of mCBP &</td>
<td>Stable polaron tst</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M</td>
<td>M2.1.2</td>
<td>Photostab. H3,H2P, Ir(C^3N)₃</td>
<td>ID decomp. prod.</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Employing excited state sinks blue PHOLEDs</td>
<td>M</td>
<td>M2.2.1</td>
<td>mCBP-Ir(dmp)₃-sink PHOLEDs</td>
<td>EQE=12%,5Khr</td>
<td>4</td>
</tr>
<tr>
<td>2.3</td>
<td>Materials and device characterization</td>
<td>M</td>
<td>M2.3.1</td>
<td>Materials characterization</td>
<td>ID TPQ v TTQ prod</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Lifetime validation and scaling</td>
<td>G/NG</td>
<td>G/NG 2</td>
<td>Blue PHOLED: 2X lifetime by excited state sink</td>
<td>UM/USC life test</td>
<td>4</td>
</tr>
<tr>
<td>3.1</td>
<td>Std character. Of blue and white PHOLEDs</td>
<td>M</td>
<td>M3.1.1</td>
<td>Validate 1cm² blue lifetime</td>
<td>5000hr/1000cd/m²</td>
<td>4</td>
</tr>
<tr>
<td>3.2</td>
<td>WSOLED lifetime characterization</td>
<td>M</td>
<td>M3.2.1</td>
<td>Validate 1cm² WSOLED lifetime</td>
<td>50Khr/3000cd/m²</td>
<td>8</td>
</tr>
<tr>
<td>3.3</td>
<td>WSOLED panel fabrication and validation</td>
<td>M</td>
<td>M3.3.1</td>
<td>Fab and char (15cm)² panel</td>
<td>Full lighting char.</td>
<td>8</td>
</tr>
<tr>
<td>3.4</td>
<td>Materials and device characterization</td>
<td>M</td>
<td>M3.4.1</td>
<td>Materials character. post mortem</td>
<td>Opt. designs w rslt</td>
<td>8</td>
</tr>
</tbody>
</table>