Next Generation Secure Scalable Communication Network for Smart Grid

Cybersecurity for Energy Delivery Systems Peer Review
July 24-26, 2012
Summary: Next Generation Secure Scalable Communication Network for Smart Grid

- **Objective**
 - Security in Lower Layers – Next generation secure PHY and MAC layer for EDS applications
 - Scalability and self-configuring – Advanced Multi-user techniques for seamless scalability of devices
 - Breakthrough reliability and availability

- **Technical Approach**
 - Quantify Utility Requirements
 - Laboratory prototype bringing all concepts from novel spread spectrum and multi-user detection techniques together and demonstrate to end-user community
 - Leveraging work in secure communications and industrial wireless communications
 - Identifying commercialization partners
 - Cost study performed to verify feasibility

- **Schedule:** On schedule & scope 9/12
- **Performers:** ORNL, PNNL, Virginia Tech, OCG, KSC, UTK
- **Partners:** Southern Company, EPRI, PG&E, SCE
Technical Approach and Feasibility

– State of the Art: EDS security is currently achieved by
 • Compute intensive cryptographic techniques
 • Key management that does not scale as devices are deployed exponentially
 • A level of network complexity of current EDS devices that inhibits scalability

– Technical approach –
 • Quantify utility requirements;
 – Stakeholders advisory board is recruited to generate requirements
 • Laboratory prototype bringing all concepts (spread spectrum, multiple access, multi-user detection) together and demonstrate to the user community;
 – Laboratory demonstration for end-user evaluation
 – Laboratory prototype evaluated by PNNL
 • Commercialization partners
 – Discussion with Invensys: currently interacting on evaluation and identifying potential applications
 – Potential opportunities with Texas Instruments and Analog Devices
 – Publications to facilitate deployment
 • Extrapolate technology to other PHY layers and applications in utility environments
Technical Approach and Feasibility

• **Feasibility**

 – Potential end-user benefit
 • Reduced key management overhead
 • Provably secure EDS communication networks
 • Scalable devices for future EDS applications
 • Reduced network complexity
 – No time slots
 – Reduced network management
 • Replaces prescriptive security guidance with deterministic Quality of Service (QoS) guarantees
 • Directly traceable to end-user requirements for seamless integration with existing systems
Technical Approach and Feasibility

• **Challenges to Success**
 – Cost-performance tradeoff for highly secure communications
 • Improvements in hardware design methods including all-digital processing for low-cost designs
 • Prototype platforms to facilitate intermediate design verification
 • Cost study performed to verify commercialization feasibility
 – Simplifying options for end-user deployment
 • Configurable communication physical layer technology that is secure-by-design and can be programmably configured to application requirements
 • Provably secure coding schemes for spread spectrum waveforms
 • Multi-user detection and interference mitigation techniques
 – Mathematically rigorous estimation of performance improvement
 • Security, reliability, and network management
 – Information-theoretic limits to scalability of the communication networks used for EDS
 • Use of code division multiple access techniques in distributed (ad-hoc) networks for improved scalability
 • Enhanced multi-user detection for improved performance specific to utility environments
Progress to Date

- Successful demonstration of fast hybrid spread spectrum technology on laboratory hardware with clear path towards commercialization using commercial digital hardware for utility applications
- Performance measurements demonstrated close to theoretical limits (verified independently at PNNL)
- Analytical framework for optimal coupling of application requirements and communication parameters making secure communication design an engineering process (VTech)
- Actual Progress (technical, $, and time) vs Planned Progress
 - Prototype platform – completed ahead of schedule, with in budget
 - Mathematical framework publication – completed on schedule, on budget, review for journal
 - Third-party testing and assessment of platform – in progress (PNNL, KSC)
Collaboration/Technology Transfer

- Plans to transfer technology/knowledge to end user
 - Demonstrations at EDS end-users and suppliers
 - Planned testing at Southern Company in FY12 Q4
 - Demonstration of secure, interoperable communication networks with existing EDS deployments
 - Engage utility industry experts for design requirements specification for future communication networks in EDS
 - Host interested suppliers to review the potential of the technology
 - Publications at academic and industry conferences
 - Next generation wireless communication will enable smart grid applications envisioned
Next Steps

- **Approach for the next year or end of project**
 - System-level optimization for integrated performance & MAC layer demonstration
 - Reconfigurability for specific end-user requirements
 - Quantitative comparison with current key management and transport layer security
 - Field testing of the devices in utility environment
 - Planned testing at Southern Company in FY12 Q4
 - Testing on ORNL AMI Interoperability Testbed
 - Risks faced
 - Key commercialization partner for technology development (utility partners are very keenly interested)
 - Interoperability with existing systems

- **Future**
 - Network provisioning for control over wireless networks for future smart grid applications
 - Precise position location and time synchronization in GPS-constrained environments
 - Secure code selection and analysis
 - HSS for other PHY layers

- **Describe potential follow-on work, if any**
 - Technology commercialization for specific EDS applications (2-3 years)
 - Optical/Quantum spread spectrum for utility backhaul networks (2 years)
 - Penetration testing of HSS-enabled device (1 year)
FAST HYBRID SPREAD-SPECTRUM (DS/FFH)

DS (wide) spectrum at output of modulator while hopping

Spectrum has same bandwidth and power density after hopping with PN sequence (PN Rate >> Data Rate for FastHSS™; e.g., as above, 2 hops per bit).

\[
G_{p(FH/DS)} \, dB = G_{p(FH)} \, dB + G_{p(DS)} \, dB = 10 \log \text{(no. of hopping channels)} + 10 \log (\text{BW}_{DS}/\text{R}_{info})
\]

“FastHSS™”

Original narrowband, high power data stream is restored if local PN sequence is same as and lined up with received PN sequence.

Summary
HSS is a Multidimensional Signal

- HSS can be defined in 3 axes (code, frequency, and time).
 - Each dimension is orthogonal with the others.
 - Permissible signal spaces along an axis may also be ~ orthogonal.
 » Codes
 » Frequencies
 » Time slots
- Easily adaptable to exploit many degrees of freedom to meet system requirements.
- Some signal overlaps may be orthogonal.
- Numerically Controlled Oscillator for Fast Frequency Synchronization
- Specific PN code generator to exploit properties of code
Publications, Reports, and Patents

- **Publications** (3 under preparation not mentioned)

- **Reports (significant)**
 - Xiao Ma, Mohammed Olama, Teja Kuruganti, Stephen Smith, “Literature Review of Hybrid Spread Spectrum Technology”
 - Shravan Garlapati et al., “Analysis of Network Bandwidth Requirements for the Advanced Metering Infrastructure”
 - MD Hadley, SL Clements, TE Carroll, “AMI Communication Requirements to Implement Demand-Response: Applicability of Hybrid Spread Spectrum Wireless”
 - Mohammed M. Olama, Stephen F. Smith, Teja Kuruganti, Xiao Ma, “HSS Provides Physical Security for Smart Grid Communications”
 - Michael Buehrer et al., “Spreading code design and multi user detection for HSS and CDMA” (2 reports)
 - Michael Buehrer et al., “Collaborative localization techniques” (draft reports)

- **Patents**
Performance of a Hybrid DS/FFH System

Effect of multi-user interference

Effect of different number of hops per bit

Effect of different jamming-to-noise ratios (JNRs)

Effect of different number of hopping channels

Performance comparisons of SS

Effect of DDS hopping technology

Effect of different PN-code lengths
Laboratory Prototype

[Diagram showing laboratory prototype components and connections]

□ = New technologies from this project