
SRNL‐STI‐2016‐00615

Best Practices / Lessons Learned from Software Qualification 
and Model Verification

Greg Flach
Environmental Modeling

Interagency Steering Committee on Performance and Risk Assessment Community of Practice Annual Technical Exchange Meeting
October 19-20, 2016



SRNL‐STI‐2016‐00615

Outline

2

• Models and Analyses are more than Codes

• Quality Assurance (QA) versus Quality Control (QC) approaches

• QA / QC Risks and Remedies

• Examples

• Summary thoughts

• Audience participation



SRNL‐STI‐2016‐00615

Components of a Risk or Performance Assessment Analysis Involving Simulation

3

Software, Models and Analyses encompass more than Codes:
• Software = Code + Documentation
• Numerical Model = Input + Code
• Overall Model = Concept + Data + Input + Code
• Analysis = All of the above
Quality Assurance must address the entire Analysis to support sound Decisions

AnalysisOverall Model

Software

Numerical 
Model

Code

Input

Documentation

Data Pre‐processing

Post‐processingOutput ResultsConceptual Model



SRNL‐STI‐2016‐00615

Quality Assurance (QA) versus Quality Control (QC) Paradigms

4

In my experience:

• QA and QC are 
complementary

• QA takes 
forefront w.r.t 
software

• QC takes 
forefront w.r.t 
model or analysis

http://softwaretestingfundamentals.com/sqa‐vs‐sqc/



SRNL‐STI‐2016‐00615

Software Quality Assurance / Qualification

5

Best Practices
• “QA” approach: Check Once, Use Many
– Simulation software embodies relatively general and static functions
– Application of systematic software QA activities through formal procedures worth the investment

Experience / Lessons Learned
• Input errors and misuse more common than coding errors
– Often due to code functionality that is ambiguously, obscurely or not documented
– Documentation, not code, problem

• The more code use the better (early use, large user base)
• Developer-only testing is often lacking

Software

Code

Documentation



SRNL‐STI‐2016‐00615

Example: Retardation Coefficient, R

6

Conventional definition of R

Unusual alternative definition 
and Porflow default

Diagnosis:
• QA testing had involved only fully saturated cases (S = 1)
• Discovered through code-to-code benchmarking during model abstraction
• User not alerted to non-conventional retardation definition in documentation

ܴ ൌ 1 ൅
௦ߩ 1 െ ݊ ௗܭ

ܵ݊

ܴ ൌ 1 ൅
௦ߩ 1 െ ܵ݊ ௗܭ

ܵ݊



SRNL‐STI‐2016‐00615

Model Quality Assurance / Verification

7

Best Practices
• “QC” approach: Check Every Use (in addition to QA for Code)
– Pre-processing software is embodies specific and undocumented functions
– Input and/or Output checked every time is more efficient than formal software QA

Experience / Lessons Learned
• Flawed Conceptual Model poses greatest Decision risk 
• Input (model setup) errors more common than Code errors
• Independent and thorough technical review is critical
• Independent development efforts are highly effective at identifying Model errors

Overall Model
Numerical 
Model

Code

InputData Pre‐processing

Conceptual Model

Output Quality Control



SRNL‐STI‐2016‐00615

Quality Control

Example: General Separations Area Groundwater Flow Model (Savannah River)

8

Quality Control check on 
groundwater flow field Output: 
• Confirm steady-state mass 

balance cell-by-cell and for domain
• Confirm Darcy’s Law honored at 

each cell face
• Confirm simulated and measured 

water levels and stream baseflows
agree

Overall Model
Numerical 
Model

Code

InputData Pre‐processing

Conceptual Model

Output



SRNL‐STI‐2016‐00615

Example: Independent Model Input Summary Tables

9

Material Time
Interval Start End Horizontal

Conductivity
Vertical

Conductivity Porosity Density Water retention

BACKFILL TI01-TI60 0 100000 7.60E-05 4.10E-05 0.35 2.631 CcBackfill

CLEAN_GROUT TI01-TI15 0 1106 6.41E-09 6.41E-09 0.58 2.405 fractured_clean

CLEAN_GROUT TI16 1106 1250 1.68E-06 1.68E-06 0.58 2.405 fractured_clean

⁞

CLEAN_GROUT TI20 1690 2113 3.11E-05 3.11E-05 0.58 2.405 fractured_clean

CLEAN_GROUT TI21-TI60 2113 100000 4.10E-05 4.10E-05 0.58 2.405 fractured_clean

FLOOR TI01 0 50 1.62E-06 1.62E-06 0.12 2.545 fractured_floor

FLOOR TI02 50 100 4.86E-06 4.86E-06 0.12 2.545 fractured_floor

⁞

FLOOR TI17 1250 1404 8.59E-05 8.59E-05 0.12 2.545 fractured_floor

FLOOR TI18-TI60 1404 100000 9.11E-05 9.11E-05 0.12 2.545 fractured_floor

ROOF TI01 0 50 9.07E-07 9.07E-07 0.136 2.558 fractured_roof

ROOF TI02 50 100 2.71E-06 2.71E-06 0.136 2.558 fractured_roof

⁞

ROOF TI15 950 1106 3.71E-05 3.71E-05 0.136 2.558 fractured_roof

ROOF TI16-TI60 1106 100000 4.10E-05 4.10E-05 0.136 2.558 fractured_roof

WALL TI01-TI60 0 100000 7.60E-05 4.10E-05 0.35 2.631 CcBackfill



SRNL‐STI‐2016‐00615

Example: Independent Model Input Summary Graphics

10

time

va
lu

e

0 5000 10000 15000 20000
10-9

10-8

10-7

10-6

10-5

Case_sa_SALTSTONE_Kv
Case_007_SALTSTONE_Kv
Case_008_SALTSTONE_Kv



SRNL‐STI‐2016‐00615

Example: GoldSim and Porflow Benchmarking

11

I‐129

Cs‐135

Np‐237

Updates to the H‐Area Tank Farm Stochastic Fate and 
Transport Model, SRR‐CWDA‐2014‐00060, Rev. 1, Aug 2015

• GoldSim model is an abstracted 
(simplified) version of Porflow
model for UQ/SA

• Independently developed 
models 



SRNL‐STI‐2016‐00615
12

Quality Assurance (QA) Risks and Remedies

Risks
• Assuming software QA testing addressed the full range of capabilities and 

conditions
• Assuming software and underlying conceptual models are valid analogues of 

physical reality
• Assuming good Input will always, or ever, produce good Output

Remedies
• Apply some level of “QC” to each Output
– e.g. cursory look at every Output

• Code-to-code benchmarking
• Prototypic experiments, field observation, natural analogues

Software

Code

Documentation



SRNL‐STI‐2016‐00615

Albert Einstein

13

“An experiment is something everybody believes, except the person who made it.”

“A theory is something nobody believes, except the person who made it.” 



SRNL‐STI‐2016‐00615

Risk and Performance Assessment Modeler

14

“A model is something nobody believes, except the modeler who developed it.” 



SRNL‐STI‐2016‐00615
15

Risks
• Assuming custom software … that produced good Output before … will for the 

next application
• Assuming software and underlying conceptual models are valid analogues of 

physical reality

Remedies
• Standardize certain pre- and post-processing tools and bring them under formal 

software QA control
• Avoid complacency in Each Time “QC” checking of model Output
• Prototypic experiments, field observation, natural analogues

Quality Control (QC) Risks and Remedies

Code

InputData Pre‐processing

Conceptual Model

Output



SRNL‐STI‐2016‐00615

Summary Thoughts

16

• Models are more than Codes
• Model QA is more than Code QA
• Model Output QC (Check Every Time) is a necessary complement to Software QA 

(Check Once / Use Many)
• Modelers tend to be overconfident in software tools and conceptual models
• Valuable components of Model and Analysis QA
– Data!
– Independent modeling efforts
– Alternative conceptual models
– Code-to-code benchmarking
– Skeptical and dedicated expert reviewers

Your thoughts and experiences ?


