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• Models and Analyses are more than Codes

• Quality Assurance (QA) versus Quality Control (QC) approaches

• QA / QC Risks and Remedies

• Examples

• Summary thoughts

• Audience participation
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Components of a Risk or Performance Assessment Analysis Involving Simulation
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Software, Models and Analyses encompass more than Codes:
• Software = Code + Documentation
• Numerical Model = Input + Code
• Overall Model = Concept + Data + Input + Code
• Analysis = All of the above
Quality Assurance must address the entire Analysis to support sound Decisions
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Quality Assurance (QA) versus Quality Control (QC) Paradigms
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In my experience:

• QA and QC are 
complementary

• QA takes 
forefront w.r.t 
software

• QC takes 
forefront w.r.t 
model or analysis

http://softwaretestingfundamentals.com/sqa‐vs‐sqc/
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Software Quality Assurance / Qualification

5

Best Practices
• “QA” approach: Check Once, Use Many
– Simulation software embodies relatively general and static functions
– Application of systematic software QA activities through formal procedures worth the investment

Experience / Lessons Learned
• Input errors and misuse more common than coding errors
– Often due to code functionality that is ambiguously, obscurely or not documented
– Documentation, not code, problem

• The more code use the better (early use, large user base)
• Developer-only testing is often lacking

Software

Code

Documentation
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Example: Retardation Coefficient, R
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Conventional definition of R

Unusual alternative definition 
and Porflow default

Diagnosis:
• QA testing had involved only fully saturated cases (S = 1)
• Discovered through code-to-code benchmarking during model abstraction
• User not alerted to non-conventional retardation definition in documentation
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Model Quality Assurance / Verification
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Best Practices
• “QC” approach: Check Every Use (in addition to QA for Code)
– Pre-processing software is embodies specific and undocumented functions
– Input and/or Output checked every time is more efficient than formal software QA

Experience / Lessons Learned
• Flawed Conceptual Model poses greatest Decision risk 
• Input (model setup) errors more common than Code errors
• Independent and thorough technical review is critical
• Independent development efforts are highly effective at identifying Model errors
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Quality Control

Example: General Separations Area Groundwater Flow Model (Savannah River)
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Quality Control check on 
groundwater flow field Output: 
• Confirm steady-state mass 

balance cell-by-cell and for domain
• Confirm Darcy’s Law honored at 

each cell face
• Confirm simulated and measured 

water levels and stream baseflows
agree

Overall Model
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Model

Code

InputData Pre‐processing
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Example: Independent Model Input Summary Tables
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Material Time
Interval Start End Horizontal

Conductivity
Vertical

Conductivity Porosity Density Water retention

BACKFILL TI01-TI60 0 100000 7.60E-05 4.10E-05 0.35 2.631 CcBackfill

CLEAN_GROUT TI01-TI15 0 1106 6.41E-09 6.41E-09 0.58 2.405 fractured_clean

CLEAN_GROUT TI16 1106 1250 1.68E-06 1.68E-06 0.58 2.405 fractured_clean

⁞

CLEAN_GROUT TI20 1690 2113 3.11E-05 3.11E-05 0.58 2.405 fractured_clean

CLEAN_GROUT TI21-TI60 2113 100000 4.10E-05 4.10E-05 0.58 2.405 fractured_clean

FLOOR TI01 0 50 1.62E-06 1.62E-06 0.12 2.545 fractured_floor

FLOOR TI02 50 100 4.86E-06 4.86E-06 0.12 2.545 fractured_floor

⁞

FLOOR TI17 1250 1404 8.59E-05 8.59E-05 0.12 2.545 fractured_floor

FLOOR TI18-TI60 1404 100000 9.11E-05 9.11E-05 0.12 2.545 fractured_floor

ROOF TI01 0 50 9.07E-07 9.07E-07 0.136 2.558 fractured_roof

ROOF TI02 50 100 2.71E-06 2.71E-06 0.136 2.558 fractured_roof

⁞

ROOF TI15 950 1106 3.71E-05 3.71E-05 0.136 2.558 fractured_roof

ROOF TI16-TI60 1106 100000 4.10E-05 4.10E-05 0.136 2.558 fractured_roof

WALL TI01-TI60 0 100000 7.60E-05 4.10E-05 0.35 2.631 CcBackfill
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Example: Independent Model Input Summary Graphics
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Example: GoldSim and Porflow Benchmarking
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I‐129

Cs‐135

Np‐237

Updates to the H‐Area Tank Farm Stochastic Fate and 
Transport Model, SRR‐CWDA‐2014‐00060, Rev. 1, Aug 2015

• GoldSim model is an abstracted 
(simplified) version of Porflow
model for UQ/SA

• Independently developed 
models 
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Quality Assurance (QA) Risks and Remedies

Risks
• Assuming software QA testing addressed the full range of capabilities and 

conditions
• Assuming software and underlying conceptual models are valid analogues of 

physical reality
• Assuming good Input will always, or ever, produce good Output

Remedies
• Apply some level of “QC” to each Output
– e.g. cursory look at every Output

• Code-to-code benchmarking
• Prototypic experiments, field observation, natural analogues

Software

Code

Documentation
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Albert Einstein
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“An experiment is something everybody believes, except the person who made it.”

“A theory is something nobody believes, except the person who made it.” 
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Risk and Performance Assessment Modeler
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“A model is something nobody believes, except the modeler who developed it.” 
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Risks
• Assuming custom software … that produced good Output before … will for the 

next application
• Assuming software and underlying conceptual models are valid analogues of 

physical reality

Remedies
• Standardize certain pre- and post-processing tools and bring them under formal 

software QA control
• Avoid complacency in Each Time “QC” checking of model Output
• Prototypic experiments, field observation, natural analogues

Quality Control (QC) Risks and Remedies

Code

InputData Pre‐processing

Conceptual Model

Output
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Summary Thoughts
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• Models are more than Codes
• Model QA is more than Code QA
• Model Output QC (Check Every Time) is a necessary complement to Software QA 

(Check Once / Use Many)
• Modelers tend to be overconfident in software tools and conceptual models
• Valuable components of Model and Analysis QA
– Data!
– Independent modeling efforts
– Alternative conceptual models
– Code-to-code benchmarking
– Skeptical and dedicated expert reviewers

Your thoughts and experiences ?


