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9. CALWAVE PROPOSED CENTRAL COAST WEC TEST
SITE AT VANDENBERG AIR FORCE BASE (VAFB)

9.1. Site Description

The California Wave Energy Test Center (CalWave) Feasibility Study evaluated offshore
test sites along the California coast for establishment of a national wave energy testing
facility (Williams et al. 2015). The project originally considered two candidate areas, one
offshore of Humboldt Bay, which is described in Chapter 9, and another Central Coast site
offshore of Vandenberg Air Force Base (VAFB). The project down selected to VAFB due to
its accessibility to shore-side support infrastructure and supply chain, among other reasons.
At VAFB, there are currently five siting at sea alternatives (locations) and three shore site
alternatives. Two offshore sites, and one shore site, are most favorable and are considered
in the Conceptual Design Scenario. The “South Base” shore location is considered as the
Notional Shore Site design case. Therefore, in this catalogue, the wave statistics will be
presented at both offshore alternatives. As shown in Figure 86, the two Vandenberg siting
options each consist of four berths centered at approximately 34.521 N, 120.689 W for the
‘South’ site and 34.4851 N, 120.6024 W for the ‘South by Southeast’ site in the Outer
Continental Shelf (outside state waters). See the CalWave report (Williams et al. 2015) for
additional figures of the site. The seafloor footprint would be constrained to an area of about
four square nautical miles. There are also two infrastructure scenarios that will be considered
in 2016: (a) using an existing offshore oil and gas platform and on shore infrastructure, or
(b) construction of new submarine power cables. If the CalWave Test Center continues to
be funded, it is assumed that testing could begin in 2021.

The Central Coast site is located near Vandenberg Air Force Base and the City of Lompoc,
California. At the South site, the water depth is approximately 71-109 m (38.8-59.6 fathoms),
and at the South by Southeast site, the water depth is approximately 66-102 m (36.1-55.8
fathoms). The bathymetry in general is gently sloping near the potential ‘South’ and ‘South
by Southeast’ berths, and then drops off to deeper water to the southeast. The sea bed is
predominantly sandy, with rocky outcroppings. Figure 87 shows the bathymetry surrounding
the test site. The wave climate at the test site varies seasonally, with calmer seas in the
summer compared to more energetic seas in the winter. The wave environment at Vandenberg
is characterized by an annual average power flux of about 39.9 kW /m at the South site and
31.4 kW/m at the South by Southeast site, including a number of events with significant
wave heights exceeding 5 m each winter.

The CalWave Team plans to offer a wide range of technical and testing infrastructure included
and optional support services for WEC developers. Vandenberg has full scale wave energy
resources, and is planned to be appropriate for mature technologies, at Technical Readiness
Level (TRL) 7-9 WECs, which are approaching full-scale, grid-connected operation. The
BOEM lease blocks being considered would enable use of up to four berths in the South
and South-by-Southeast alternatives, and will allow a broad range of test conditions for the
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purpose of populating a WEC power matrix. Cables would land at the South Base site near
Vandenberg Dock. Once WECs are proven, commercial site alternatives are available in the
vicinity to power offshore oil platforms that are presently using diesel generators.
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Figure 86: Two of the potential Vandenberg test site areas, ‘South’, and ‘South by
Southeast’ (SSE), are located on the coast of California near the city of Lompoc and
Vandenberg Air Force Base. The South site is approximately 6-9 km off-shore in
71-109 m depth water (38.8-59.6 fathoms) and the South by Southeast site is approx-
imately 6-11 km off-shore in 66-102 m depth water (36.1-55.8 fathoms). No berthing
infrastructure exists at this time, however four potential berths at each site are signi-
fied by the blue circles. Two Coastal Data Information Program (CDIP) ocean buoys,
and several National Weather Service (NWS) meteorological stations are close to the
test site. The points of reference for the hindcast simulation data presented in this
chapter are shown. Image modified from Google Earth (2015).
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Figure 87: Nautical chart of the Vandenberg area offshore of Point Arguello and Point
Conception shows the general bathymetry around the proposed test site. Soundings
in fathoms (1 fathom = 1.8288 m). Image modified from nautical chart #18721 (Office
of Coast Survey 2015).

9.2. WEC Testing Infrastructure

9.2.1. Mooring Berths

Four deep water berths are planned at either the South or South by Southeast locations.
CalWave will be designed for WEC developers to provide key equipment optimized for their
device, including the mooring and anchoring, umbilical, and power conditioning equipment.
Alternatives for future expansion are available for deeper sites and shallow/mid-depth sites.

9.2.2. Electrical Grid Connection

The Conceptual Design includes four (4) “home run” cables from sea to shore, rated at
10 MW at 25 kV, plus a spare cable for a total of five (5) cables. Cables will land on VAFB
at the notional “South Base” location and connect to a Department of Defense (DOD) grid
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that is supplied by PG&E. Initially CalWave will connect with the Vandenberg distribution
local grid at 12 kV, with an upgrade path to 70 kV.

9.2.3. Facilitating Harbor

Port Hueneme is the only deep water harbor between Los Angeles and the San Francisco Bay
area, and is about 70 nm (~130 km) from Vandenberg Dock and supports the offshore oil
and gas industry. This facility can host very large vessels, and houses large cranes, dockside
storage facilities and marine operations services for the oil and gas industry. Cal Poly Pier
in Port San Luis and Port San Luis Boatyard are both approximately 24 nm (~44 km)
from Vandenberg Dock. Ellwood Pier is about 37 nm (~69 km), Santa Barbara Harbor
is about 54 nm (~100 km), and Casitas Pier in Carpentaria is about 58 nm (~107 km)
from Vandenberg Dock. The Cojo Anchorage, on the sheltered side of Point Conception, is
routinely used as a staging location by the offshore industry. More information and figures
can be found in the CalWave report (Williams et al. 2015).

9.2.4. On-Shore Office Space

CalWave has focused on a notional shore station facility at the ‘South Base’ location, which
would be appropriate for either the South or South by Southeast test site alternatives.
This shore station facility is adjacent to Vandenberg Dock on Vandenberg AFB, and is
planned to have two modular buildings, with on-site space for WEC developers. The Shore
Station includes an area for modular power conditioning equipment to be provided by WEC
developers. The Vandenberg Dock area, which is located at the former U.S. Coast Guard
Surf Station, next to the shore station, is a potential location for office functions, on a not-
to-interfere basis. This potential shore station would host key personnel and WEC developer
staff during test operations.

9.2.5. Service Vessel and Engineering Boatyard Access

Capable shore side infrastructure is readily available near the project area due to a long
history of oil services construction and operations in the area. Facilities include heavy lift
floating cranes (offshore rated) and dockside cranes, and a variety of work boats and other
vessels including large work vessels and cable lay equipment, remotely operated vehicles, and
automated underwater vehicles. More detailed information is in Williams et al. 2015.

9.2.6. Travel and Communication Infrastructure

There are several airports in the area. The Santa Barbara Municipal Airport (SBA) is 38.2
miles southeast of Lompoc, and the Los Angeles International Airport (LAX) is 126.7 miles
southeast of Lompoc. The Santa Maria Pub/Capt G Allan Hancock Field Airport (SMX)
is 18 miles north of Lompoc. There are several Federal Communication Commission (FCC)
registered cell towers located in and around Lompoc, CA, and cell phones may be used on
VAFB, although coverage varies by location on-base.
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9.2.7. Met-Ocean Monitoring Equipment

Real-time meteorological and wave data are collected by two met-ocean buoys and four
meteorological stations. Instrument and data specifications for this monitoring equipment
are summarized in Table 7. Buoy data is accessible online at the CDIP and NDBC databases.
CDIP071 (NDBC 46218) is located approximately 15 km southwest of the test site, and
CDIP216 (NDBC 46257) was recently deployed nearby. There is a water level observation
network on the Harvest Oil Platform, just south of the site. There are several meteorological
stations onshore.

Figure 88: (a) Waverider buoy CDIP071 / NDBC46218 located about 15 km southwest
of test site (National Data Buoy Center 2015). (b) C-MAN Station PTGC1 located
about 10 km north of test site (National Data Buoy Center 2015).
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Table 7: Wave monitoring equipment in close proximity to the VAFB proposed test

themes/s?pb=1&u2=
$:071:st:1&d2=p9

nav=historic&sub=data
&stn=216&stream=p1l
&xitem=info

site.
Instrument | CDIPO71 / CDIP216 / HRVC1 -
Name NDBC46218 - NDBC46257 9411406 -
(Nickname) | (“Harvest, CA”) | (“Harvest Harvest Oil
Southeast, CA) Platform, CA
Type Waverider Buoy Waverider Buoy Water Level
Observation
Network
Measured -std. met. data -std. met. data -barometric
parameters -spectral wave -spectral wave pressure
density data density data -air temp
-spectral wave -spectral wave
direction data direction data
Variables Std. Met.: | -Spectral | Std. Met.: | -Spectral PRES
reported, WVHT Wave WVHT Wave ATMP
including DPD Density DPD Density (6 min
derived APD -Spectral | APD -Spectral sampling
variables MWD Wave MWD Wave period)
(Sampling WTMP Direction | WTMP Direction
interval) (30 min) (30 min) | (30 min) (30 min)
Location ~15 km southwest ~15 km southwest Just south
of site of site of the site
Coordinates | 34.454 N 120.782 34.439 N 120.766 34.469 N
W (34°27'14.4” N W (34°26'20.4” N 120.682 W
120°46°55.2” W) 120°45’57.6” W) (34°28'9” N
120°40°55” W)
Depth 548.6 m 576.1 m -air temp
height: 30 m
above site
elevation
-barometer
elev: 26.1 m
mean sea level
Data Start 3/19/1998 7/9/2015 3/1/2013
(additional short
deployment in Dec
1995 - Mar 1996)
Data End present present present
Period of ~17.5 yrs <1lyr ~2.5 yrs
Record
Owner / NOAA — "Information | NOAA — ”Information NOAA’s
Contact Submitted by Scripps” | Submitted by Scripps” National
Person http://cdip.ucsd.edu/ | http://cdip.ucsd.edu/? Ocean Service

http://www.ndbc
.noaa.gov /station
_history.php?
station=hrvcl
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Instrument | PTGC1 KCAVANDE3 KCAGOLET23
Name
(Nickname)
Type C-MAN station (MARS payload) Met station Met station
Measured -std. met. data Meteorological data Meteorological data
parameters | -continuous winds
Variables Std Met.: Contin. Winds: AirTemp AirTemp
reported, WD WDIR DewPoint DewPoint
including WSPD WSPD Pressure Pressure
derived GST GDR WDIR WDIR
variables BAR GST WSPD WSPD
(Sampling ATMP GTIME Humidity Humidity
interval) DEWP (10 min Precip Precip

(1 hr sampling | sampling (5 min) Solar

period) period) Radiation

UV Index
(5 min)

Location ~ 10 km north of the site, SpaceX Launch Goleta, CA

on shoreline Complex 4 Office
Coordinates | 34.577 N 120.648 W (34°34'36” N | 34.637 N 120.613 W 34.461 N 120.371 W

120°38’54” W) (34°38’13.2” N, (34°2739.6” N

120°36°46.8” W) 120°22’15.6” W)

Depth -site: 32.3 m above sea level Elevation: 305 ft Elevation: 98 ft

-air temp: 9.1 m above site

-anemometer: 9.4 m above site

-barometer: 33.5 m above sea level
Data Start -std met: 4/23/1984 1/19/2012 6/19/2015

-contin winds: 4/26,/1997
Data End present present present
Period of std met: ~31.5 yrs ~3.5 yrs <1lyr
Record contin winds: ~18.5 yrs
Owner / National Data Buoy Center National Weather National Weather
Contact http://www.ndbc.noaa.gov/ Service; data download | Service; data download
Person station_history.php? wunderground.com wunderground.com

station=ptgcl

9.2.8. Environmental Monitoring

Environmental conditions have not been assessed at the Vandenberg Site, although a sum-
mary of potential environmental studies that may be needed are in Williams et al. 2015.
When CalWave receives the next phase of funding, they will further characterize the site.

9.2.9. Permitting

No permits have been obtained as of 2015. CalWave has leveraged the lessons-learned from
PG&E’s WaveConnect Program and has investigated most aspects of the permitting process
at this stage. A high level screening analysis to identify critical issues in the process has
been ongoing. The information found so far from this process can be found in Williams et
al. 2015.
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9.3. Data used

Humboldt State University (part of the CalWave team) produced a 10 year hindcast dataset
for the various siting alternative locations offshore of Vandenberg Air Force Base (Williams et
al. 2015). This dataset was used to calculate parameters of interest for the characterization
at the two locations presented for the CalWave central coast site. The hindcast data at the
grid points shown in Figure 86 were analyzed.

In addition to the hindcast data set, historical data from buoy CDIP071 / NDBC 46218 was
used to calculate estimates of extreme events and representative spectra. As with the other
sites, CFSR wind data and OSCAR current data were used. See Figures 86 and 89 for data
locations.

JI...
Point Arguello

I OSCAR

Point Conception

9/2013  34°29'05.40" N 12

Figure 89: The catalogue test site locations in relation to OSCAR surface current and
CSFR wind data points (Google Earth 2015).
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9.4. Results

The following sections provide information on the joint probability of sea states, the vari-
ability of the IEC TS parameters, cumulative distributions, weather windows, extreme sea
states, and representative spectra. This is supplemented by wave roses as well as wind and
surface current data in Appendix G. The wind and surface current data provide additional
information to help developers plan installation and operations & maintenance activities.

9.4.1. Sea States: Frequency of Occurrence and Contribution to Wave Energy

Joint probability distributions of the significant wave height, H,,q, and energy period, T¢,
are shown in Figures 90 and 91. Figure 90 (top) shows the frequency of occurrence of each
binned sea state and Figure 90 (bottom) shows the percentage contribution to the total wave
energy for the South location. The same information is shown for the SSE location in 91.
Figure 90 and Figure 91 (top) indicate that the majority of sea states are within the range
1.bm < H,0 < 35mand 6s < T, <13 s; but a wide range of sea states are experienced
at the Vandenberg site, including extreme sea states caused by severe storms where H,,
exceeded 6 m. The site is well suited for testing WECs at various scales, including full-
scale WECs, and testing the operation of WECs under normal sea states. This would also
be a desirable site for commercial deployment. Although the occurrence of an extreme sea
state for survival testing of a full scale WEC is unlikely during a normal test period, the
Vandenberg site wave climate offers opportunities for survival testing of scaled model WECs.

As mentioned in the methodology (Section 2.2), previous studies show that sea states with
the highest occurrence do not necessarily correspond to those with the highest contribution
to total wave energy, as is the case in Figures 90 and 91. The total wave energy in an average
year at the South location is about 352,980 kWh/m, which corresponds to an average annual
omnidirectional wave power of 39.9 kW /m. The total average wave energy in an average
year at the SSE location is about 277,660 kWh/m, which corresponds to an average annual
omnidirectional wave power of 31.4 kW /m. The most frequently occurring sea state is within
the range 2 m < H,,0 < 2.5 m and 10 s < T, < 11 s for both the South and SSE locations,
while the sea state that contributes most to energy is within the range 3 m < H,,p < 3.5 m
and 12 s < T, < 13 s for the South location and within the range 2.5 m < H,,0 < 3 m and
11 s < T, < 12 s for the SSE location. Several sea states occur at a similar frequency, and
sea states within 2 m < H,,0 < 4 m and 10 s < T, < 13 s contribute a similar amount to
energy.

Frequencies of occurrence and contributions to energy of less than 0.01% are not shown in
the figure for clarity. For example, the sea state within 0.5 m < H,p < 1mand4s < T, <
5 s has an occurrence of 0.04% for the South location. The contribution to total energy,
however, is only 0.002% and, therefore, does not appear in Figure 90 (bottom). Similarly,
the sea state within 7.5 m < H,,0 < 8 m and 16 s < T, < 17 s has an occurrence of 0.003%,
but the contribution to total energy is 0.05%.

Curves showing the mean, 5" and 95 percentiles of wave steepness, H,,0/7, are also shown
in Figures 90 and 91. The mean wave steepness is 0.0150 (~1/67) at the South location,
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and 0.0142 (~1/70) at the SSE location. The 95" percentile is 0.0323 (a1/31) at the South
and 0.0312 (=1/32) at the SSE location.
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Figure 90: Joint probability distribution of sea states for the South Vandenberg site.

The top figure is frequency of occurrence and the bottom figure is percentage of total
energy, where total energy in an average year is 352,980 kWh/m.
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Figure 91: Joint probability distribution of sea states for the SSE Vandenberg site.

The top figure is frequency of occurrence and the bottom figure is percentage of total
energy, where total energy in an average year is 277,660 kWh/m.

9.4.2. IEC TS Parameters

The monthly means of the six IEC TS parameters, along with the 5* and 95" percentiles,
are shown in Figures 92 and 93. The months, March - February, are labeled with the first
letter (e.g., March is M). The values in the figure are summarized in Tables 37 and 38 in
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Appendix G.

Monthly means of the significant wave height, H,,,, and the omnidirectional wave power
density, J, show the greatest seasonal variability compared to the other parameters. Values
are largest and vary the most during the winter months. The same trend is observed for the
monthly mean energy period, 7., but its variation is less pronounced. These observations
are consistent with the relationship between wave power density, significant wave height and
energy period, where wave power density, .J, is proportional to the energy period, T, and
the square of the significant wave height, H,,.

The direction of maximum directionally resolved wave power is very consistent in the winter
from west /northwest, and during the rest of the year has frequent shifts to the south, signified
by the drop in the 5 percentile. Seasonal variations of the remaining parameters, ¢, and
dg, are much less than J, H,,y, T., and 0;, and are barely discernable. Monthly means
for spectral width, €y, remain nearly constant at ~ 0.24. Similarly, monthly means for the
directionality coefficient, dy, remain nearly constant at ~ 0.98. In summary, the waves at
both the South and SSE locations at the Vandenberg site, from the perspective of monthly
means, have a fairly consistent spectral width, are predominantly from the west/northwest,
and exhibit a wave power that has a very narrow directional spread.

Wave roses of wave power and significant wave height, presented in Appendix G, Figures
156 - 159, also show the predominant direction of the wave energy at the Vandenberg site,
which is west/northwest, with frequent shifts to the south. Figure G shows two dominant
wave direction sectors, northwest (at 300°) and west/northwest (WNW) at 285°. At the
South location, along the predominant wave direction, 300°, the omnidirectional wave power
density is at or below 35 kW /m about 25% of the time, but greater than 35 kW /m nearly
15% of the time. Along the WNW direction (285°), wave power density is at or below 35
kW /m about 12% of the time, and greater than 35 kW/m about 17% of the time. At the
SSE location, along the predominant wave direction, 300°, the omnidirectional wave power
density is at or below 35 kW /m about 31% of the time, and greater than 35 kW /m about
6% of the time. Along the WNW direction (285°), wave power density is at or below 35
kW/m about 17% of the time, and greater than 35 kW /m about 16% of the time.
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Figure 92: The average, 5" and 95" percentiles of the six parameters at the South
Vandenberg site.
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Figure 93: The average, 5" and 95" percentiles of the six parameters at the SSE
Vandenberg site.

Monthly means, however, smear the significant variability of the six IEC parameters over
small time intervals as shown in plots of the parameters at 1-hour intervals in Figures 94
and 95 for a representative year. While seasonal patterns described for Figures 92 and 93
are still evident, these plots show how sea states can vary abruptly at small time scales with
sudden changes, e.g., jumps in the wave power as a result of a storm.
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Figure 94: The six parameters of interest over a one-year period, March 2003 — Febru-
ary 2004 at the South Vandenberg site.
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Figure 95: The six parameters of interest over a one-year period, March 2003 — Febru-
ary 2004 at the SSE Vandenberg site.

9.4.3. Cumulative Distributions

Annual and seasonal cumulative distributions (a.k.a., cumulative frequency distributions)
are shown in Figures 96 and 97 for the South and SSE sites, respectively. Note that spring
is defined as March — May, summer as June — August, fall as September — November, and
winter as December — February. The cumulative distributions are another way to visualize
and describe the frequency of occurrence of individual parameters, such as H,,o and T,. A
developer could use cumulative distributions to estimate how often they can access the site to
install or perform operations and maintenance based on their specific device, service vessels,
and diving operation constraints. For example, if significant wave heights need to be less than
or equal to 1 m for installation and recovery, according to Figure 96, this condition occurs
about 2% of the time on average within a given year. If significant wave heights need to be
less than or equal to 2 m for emergency maintenance, according to Figure 96, this condition
occurs about 37% of time on average within a given year. Cumulative distributions, however,
do not account for the duration of a desirable sea state, or weather window, which is needed
to plan deployment and servicing of a WEC device at a test site. This limitation is addressed
with the construction of weather window plots in the next section.
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Figure 96: Annual and seasonal cumulative distributions of the significant wave height
(top) and energy period (bottom) at the South Vandenberg site.
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Figure 97: Annual and seasonal cumulative distributions of the significant wave height
(top) and energy period (bottom) at the SSE Vandenberg site.

9.4.4. Weather Windows

Figures 98 and 101 show the number of weather windows at the South and SSE Vandenberg
sites, when significant wave heights are at or below some threshold value for a given duration,
for an average winter, spring, summer and fall. In these plots, each occurrence lasts a
duration that is some multiple of 6-hours. The minimum weather window is, therefore,
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6-hours in duration, and the maximum is 96-hours (4 days). The significant wave height
threshold is the upper bound in each bin and indicates the maximum significant wave height
experienced during the weather window. Note that the table is cumulative, so, for example,
an occurrence of H,,p < 1.5 m for at least 78 consecutive hours in the fall is included in
the count for 72 consecutive hours as well. In addition, one 12-hour window counts would
count as two 6-hour windows. It is clear that there are more occurrences of lower significant
wave heights during the summer than winter, which corresponds to increased opportunities
for deployment or operations and maintenance.

Weather window plots provide useful information at test sites when planning schedules for
deploying and servicing WEC test devices. For example, if significant wave heights need to be
less than or equal to 1 m for at least 12 consecutive hours to service a WEC test device at the
South Vandenberg site with a given service vessel, there would be, on average, two weather
windows in the summer, but none in the winter. When wind speed is also considered, Figures
99 and 102 shows the average number of weather windows with the additional restriction of
wind speed, U < 15 mph. The local winds (which are not necessarily driving the waves)
are used in these weather windows, and are given in Appendix G.4. That wind data was
not available from the hindcast, so data from CFSR was used (see Section 2.3, Appendix
G.4). For shorter durations (6- and 12-hour windows), daylight is necessary. Windows with
U < 15 mph and only during daylight hours are shown in Figures 100 and 103. Daylight
was estimated as bam — 10pm Local Standard Time (LST).
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Figure 98: Average cumulative occurrences of wave height thresholds (weather win-
dows) for each season at the South Vandenberg site. Winter is defined as December
— February, spring as March — May, summer as June — August, and fall as September
— November.
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Figure 99: Average cumulative occurrences of wave height thresholds (weather win-
dows) for each season at the South Vandenberg site with an additional restriction of
U < 15 mph.
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Figure 100: Average cumulative occurrences of wave height thresholds (weather win-
dows) for 6- and 12-hour durations with U < 15 mph and only during daylight hours
(5am — 10pm LST) at the South Vandenberg site.
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Figure 101: Average cumulative occurrences of wave height thresholds (weather win-
dows) for each season at the SSE Vandenberg site. Winter is defined as December —
February, spring as March — May, summer as June — August, and fall as September —
November.
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Figure 102: Average cumulative occurrences of wave height thresholds (weather win-
dows) for each season at the SSE Vandenberg site with an additional restriction of U
< 15 mph.
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Figure 103: Average cumulative occurrences of wave height thresholds (weather win-
dows) for 6- and 12-hour durations with U < 15 mph and only during daylight hours
(bam — 10pm LST) at the SSE Vandenberg site.
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9.4.5. Extreme Sea States

As mentioned in 2.2, the way IFORM and the modified IFORM are currently implemented,
they do not work well for datasets whose variables (H,,o and T.) are bimodally distributed.
The CDIP071 / NDBC 46218 dataset is not well suited for IFORM, and therefore only the
extreme significant wave height is estimated here using extreme value theory.

The generalized extreme value distribution (GEV) was fit to the annual significant wave
height maximum in order to generate estimates of extreme values under the annual maximum
method (AMM) (Rugerio et al. 2010). The peak over threshold (POT) method was also
applied to the entire dataset in order to generate estimates of extreme values based on
significant wave height exceedances over a certain threshold. Based on the application of
this method as described by Ruggerio et al. (2010), the 99.5th percentile of significant wave
height was used as a threshold value. These methods were applied using the WAFO matlab
toolbox (Brodtkorb et al. 2000). The bootstrapping method (Efron and Tibshirani 1993)
was applied in order to generate a 95% confidence interval around the CDFs derived using
both of the extreme value distribution methods utilized in this analysis.

The 100-year H,,q is estimated as 9.98 m and 9.63 m using the GEV and POT methods,
respectively, as shown in Figures 104 and 105. The 10-, 25-, and 50-year values are shown
in the figures. It should be noted that conditions at the NDBC46218 buoy (at a depth on
the order of 500 m) may differ significantly from the conditions at the test site (at depths
on the order of 100 m).
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Figure 104: The generalized extreme values distribution was fit to annual maximum
of significant wave height from NDBC46218 to generate estimates of extreme values.
The 95% confidence interval is shown as well.
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Peak Over Threshold
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Figure 105: The peak over thresholds method was used with a threshold value of the
99.5th percentile of significant wave height from NDBC46218. The 95% confidence
interval is shown as well.

9.4.6. Representative Wave Spectrum

All hourly discrete spectra measured at CDIP071 / NDBC46218 for the most frequently
occurring sea states are shown in Figure 106. The most frequently occurring sea state,
which is within the range 1.5 m < H,,0 < 2 m and 8 s < T, < 9 s, was selected from a JPD
similar to Figures 90 & 91 in Section 9.4.1, but based on the NDBC 46218 buoy data. As a
result, the JPD, and therefore the most common sea states, generated from buoy data are
slightly different from that generated from hindcast data. For example, the most frequently
occurring sea state for the JPD generated from hindcast data is 0.5 m higher on bounds for
Hpo (2 m < H,0 i 2.5 m), and two seconds higher on bounds for T, (10 s < T, < 11 s).
Often several sea states will occur at a very similar frequency, and therefore plots of hourly
discrete spectra for several other sea states are also provided for comparison. Each of these
plots includes the mean spectrum and standard wave spectra, including Bretschneider and
JONSWAP, with default constants as described in Section 2.2.

For the purpose of this study, the mean spectrum is the ‘representative’ spectrum for each sea
state, and the mean spectrum at the most common sea state, shown in Figure 106 (bottom-
left plot), is considered the ‘representative’ spectrum at the site. The hourly spectra vary
considerably about this mean spectrum, but this is partly reflective of the bin size chosen for
H,,o and T,. Comparisons of the representative spectra in all plots with the Bretschneider
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and JONSWAP spectra illustrate why modeled spectra with default constants, e.g., the shape
parameter v = 3.3 for the JONSWAP spectrum, should be used with caution. Using the
constants provided in Section 2.2, the Bretschneider spectra are, at best, fair representations
of the mean spectra in Figure 106, and it does not capture the bimodal nature of the spectra.
The mean measured spectra is the best representation of the conditions, however, if these
modeled spectra were to be used at this site, it is recommended that the constants undergo
calibration against some mean spectrum, e.g., the representative spectrum constructed here.
A better alternative would be to explore other methods or spectral forms to describe bimodal
spectra (e.g., Mackay 2011) if it is known that the shape is not unimodal.
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Figure 106: All hourly discrete spectra and the mean spectra measured at CDIP071
/ NDBC 46218 within the sea state listed above each plot. The JONSWAP and
Bretschneider spectra are represented by red and black dotted lines, respectively.
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10. HUMBOLDT BAY, CALIFORNIA: POTENTIAL WEC
TEST SITE

10.1. Site Description

For the purpose of this catalogue, the potential WEC site offshore of Humboldt Bay, referred
to herein as the Humboldt Site, is located at 40.8418 N, 124.2477 W. As seen in Figure 107,
the Humboldt Site lies in the footprint of the former Pacific Gas & Electrics (PG&E) pilot
project test bed, the Humboldt WaveConnect (HWC), which was located in state waters to
potentially ease permitting restrictions. PG&E considered this location for a WEC testing
facility during the years 2008 — 2011 (Dooher et al. 2011). PG&E chose this test bed location
based on numerous considerations, and the motivation for HWCs site placement is available
in more detail in PG&Es Final Report (Dooher et al. 2011).

The Humboldt Site is approximately 9 km north/northwest of Humboldt Bay near the city
of Eureka in Humboldt County, California (Figure 107). The site is at 45 m depth and lies
over a sedimentary shelf consisting of sand and clay. As seen in Figure 108, the deployment
site features a gently sloping seabed without many irregularities such as canyons that could
disturb the local wave field (Dooher et al. 2011). The sediment and bathymetry are well
suited for subsea cable burial and anchoring (Dooher et al. 2011).

The wave climate at the test site varies seasonally, with calmer seas in the summer compared
to more energetic seas in the winter. The wave environment at the site is characterized by an
annual average power flux of about 32.2 kW /m, including a number of events with significant
wave heights exceeding 7 m each winter.

This site is not as developed as some of the other sites in this catalogue, but it has the basic
infrastructure needed to support WEC testing. The surrounding area offers port facilities,
an electrical substation on shore, and an abundance of high quality met-ocean data.
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Figure 107: The proposed Humboldt Site is located on the coast of California near the
city of Eureka. The test site is 5-6 km off-shore in 45 m depth water (~25 fathoms).
No berthing or ocean infrastructure exist at this time. A future grid connection could
be established at the existing substation. Two National Data Buoy Center (NDBC)
ocean buoys and two National Weather Service (NWS) meteorological stations are
close to the test site. The Woodley Island Marina and the City of Eureka Public
Marina are located in Humboldt Bay and boatyard access is available at the Fields
Landing Boatyard. The point of reference for the hindcast simulation is the primary
coordinate for the proposed test site. Image modified from Google Earth (2014).
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Figure 108: Nautical chart of Humboldt Bay and surrounding area shows the general
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Image modified from nautical chart #18620 (Office of Coast Survey

Survey 2013).
2012).
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10.2. WEC Testing Infrastructure

10.2.1. Mooring Berths

As a potential test site, the Humboldt Site has no mooring berths installed or planned.

10.2.2. Electrical Grid Connection

There is currently no grid connection at the Humboldt Site. Future projects, however, may
take advantage of the substation onshore directly landward of the test site (Waypoint #4
in Figure 107). The 60 kV PG&E Fairhaven Substation has three 60 kV lines connected to
it, the highest of which accommodates 41 MW. The nearby former pulp mill facility also
has a substation that interconnects to the same 60 kV transmission lines and is capable of
accommodating 30 MW.

10.2.3. Facilitating Harbor

The port nearest to the test site is located within Humboldt Bay, which is the only deep-water
port on California’s North Coast (Department of Transportation 2012). For boat mooring,
there are two options in Humboldt Bay near the city of Eureka: the Woodley Island Marina
(Waypoint #1 in) and the City of Eureka Public Marina (Waypoint #2 in Figure 107).

10.2.4. On-Shore Office Space
10.2.5. Service Vessel and Engineering Boatyard Access

No dedicated service vessel is available at this time. Boats may be serviced at Fields Landing
Boatyard (Waypoint #3 in Figure 107). This boatyard serves small to commercial-sized
fishing boats with a travel lift. Repairs are made by the owner or hired external personnel.
There may be companies such as Englund Marine & Industrial Supply Co. that can provide
additional engineering services.

10.2.6. Travel and Communication Infrastructure

The Arcata/Eureka Airport services the Humboldt Bay area. The airport has several flights
per day. Cellular phone service is available with moderate to full coverage.

10.2.7. Met-Ocean Monitoring Equipment

Real-time meteorological and wave data are collected by three met-ocean buoys and two
meteorological stations. Instrument and data specifications for this monitoring equipment
are summarized in Table 8. Buoy data is accessible online at the CDIP and NDBC databases.
CDIP168 (NDBC46244) is operational and located approximately 8 km west of the test site.
NDBC 46022 (Figure 109 (a)), approximately 30 km southwest of the site, has been offline
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for repair and is expected to be operational in the fall of 2014. CDIP128 (NDBC 46212)
(Figure 109 (b)) is approximately 12 km from the test site, but was decommissioned in 2013.
In addition to the met/ocean buoys, there are two land based meteorological stations located
in Eureka, California.

Figure 109: (a) Discus buoy NDBC46022 located 30 km from site, (b) Waverider buoy
CDIP128/NDBC46212 located 12 km south of test site (National Data Buoy Center
2014).
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Table 8: Wave
test site.

monitoring equipment in close proximity to the Humboldt proposed

Instrument | CDIP128/ NDBC46022 (LLNR | CDIP168 /
Name NDBC46212 - 500 / “Buoy 22”) NDBC46244 -
(Nickname) | (“South Spit”) (“North Spit”)
Type Waverider Buoy 3-meter discus buoy Waverider Buoy
Measured -std. met. data -std. met. data -std. met data
parameters -spectral wave -continuous winds data -spectral wave
density data -spectral wave density data density data
-spectral wave -spectral wave direction data -spectra wave
direction data (only from 2007-2010) directional data
Variables Std. -Spectral | Std. Contin. | -Spectral | Std. -Spectral
reported, Met.: Wave Met.: Winds: | Wave Met.: Wave
including WVHT | Density WDIR WDIR Density WDIR Density
derived DPD -Spectral | WSPD | WSPD -Spectral | WSPD | -Spectral
variables APD Wave GST GDR Wave GST Wave
(Sampling MWD Direction | WVHT | GST Direction | WVHT | Direction
interval) WTMP | (30 min) | DPD GTIME | (1 hr) DPD (30
(30 APD (10 APD min)
min) PRES min) PRES
ATMP ATMP
WTMP WTMP
(1 hr) (30
min)
Location 12 km South of 30 km West/Southwest of 8 km West of Test
site, 6.5 km West Test site Site
of Humboldt Bay
entrance
Coordinates | 40.753 N 124.313 40.724 N 124.578 W 40.888 N 124.356
W (40°45'12" N (40°43'25” N 124°34°41” W) | W (40°53'18” N
124°18’48” W) 124°21722” W)
Depth 40 m 674.8 m 114 m
Data Start | 1/22/2004 -wave data: 1982 2/9/2010
-spectral wave data:
01/01/1996
-directional spectra:
06/01,/2007
Data End 4/3/2013 -11/13/2013 present
-dir. spectra ended 2/19/2010
-will be redeployed 8/2014
Period of ~9 yrs -wave data: ~32 yrs ~5.5 yrs
Record -spectral data: ~18 yrs
-directional spectra: ~4 yrs
Owner/ NOAA- National Data Buoy Center NOAA-
Contact “Information http://www.ndbc.noaa.gov/st | “Information
Person Submitted by ation_page.php?station=4602 Submitted by
Scripps” 2 Scripps”
http://cdip.ucsd.e http://cdip.ucsd.e
du/?nav=recent&s du/?ximg=search&
ub=observed&stn= xsearch=168&xsea
128&xitem=info&s rch_ type=Station_I
tream=pl D
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Instrument | KCAEUREK4 | KCAEUREK?Y
Name
(Nickname)
Type Met station Met Station
Measured Meteorological Data | Meteorological Data
parameters
Variables AirTemp AirTemp
reported, DewPoint DewPoint
including Pressure Pressure
derived WDIR WDIR
variables WSPD WSPD
(Sampling Humidity Humidity
interval) (5 min) Precip
(5 min)

Location Humboldt Hill, Herrick Hill,

Eureka, CA Eureka, CA
Coordinates | 40.732 N 40.758 N

124.205 W 124177 W

(40° 43’ 547

N, 124° 12’ 177 W)
Depth Elev.: 85 ft Elev.: 102 ft
Data Start 3/7/2008 3/15/2011
Data End present present
Period of ~6.5 yrs ~3.5 yrs
Record
Owner / National Weather National Weather
Contact Service; Service;
Person data download data download

wunderground.com

wunderground.com
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10.2.8. Environmental Monitoring

Environmental conditions have not been assessed at the Humboldt Site, and although some
environmental studies were conducted as part of an environmental site assessment (ESA) for
the HWC project site, the ESA was never completed (Dooher et al. 2011). PG&E partnered
with Redwood Sciences Lab, Klamath Bird Observatory, and Humboldt State University
(HSU) for their ESA related studies. Several ESA related studies reached completion in-
cluding a marine life study conducted by Dr. Dawn Goley at HSU (Dooher et al. 2011:
Appendix HSU E), a sediment dynamics study (Dooher et al. 2011: Appendix HSU C)
and site placement in relation to local fishing economics study (Dooher et al. 2011: Ap-
pendix HSU D, Appendix HSU B). Future projects must further characterize the site and
be responsible for environmental monitoring of the WEC device.

10.2.9. Permitting

The Humboldt Site has no federal, state or local permits to operate as a WEC test site.
Future efforts to permit the Humboldt Site will require a substantial investment through
the NEPA process, including outreach to various stakeholders, required permits for testing
in California state waters, the development of an environmental impact report and monitor-
ing, and adaptive management plans. The time required for this process is unknown and
developers should be prepared for significant time uncertainty.

Although future projects must devote a significant effort to permitting at Humboldt Bay,
developers can leverage the lessons learned from the HWC project site to ease the process.
PG&E states in their report that they hope that their experiences may be informative for
future test site developers and help future projects avoid some of the struggles they faced
(Dooher et al. 2011). PG&E was issued preliminary permits for the HWC project site
in 2008 through the Federal Energy Regulatory Commission (FERC), but a Pilot Project
Licensing Process (PPLP) was never obtained (Dooher et al. 2011). Of all the obstacles,
uncertainty regarding the expected impact of WEC devices on the environment was a major
challenge in obtaining the permit. This uncertainty was partly due to the lack of specific
information concerning WEC technologies to be tested at PG&Es site, and also the relative
lack of understanding about the marine environment at the site. More information about
PG&Es HWC project can be found in their final report, which is available from the Office
of Science and Technical Information at http://www.osti.gov/scitech/biblio/1032845 (report
ID 1032845).

10.3. Data used

Researchers at Sandia National Laboratories produced a 10 year hindcast dataset for the area
offshore of Humboldt Bay, CA (Dallman et al. 2014). This dataset was used to calculate
parameters of interest for the characterization at this site. The hindcast data at the grid
point shown in Figure 110 was analyzed.

In addition to the hindcast data set, historical data from buoy CDIP128/NDBC 46212 was
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used to calculate estimates of extreme events and representative spectra. As with the other
sites, CFSR wind data and OSCAR current data were used. See Figures 107 and 110 for
data locations.

Legend
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Figure 110: The catalogue test site location in relation to NDBC Buoys, OSCAR
surface current data points, CSFR wind data points, and the nearest airport (Google
Earth 2014).

10.4. Results

The following sections provide information on the joint probability of sea states, the vari-
ability of the IEC TS parameters, cumulative distributions, weather windows, extreme sea
states, and representative spectra. This is supplemented by wave roses as well as wind and
surface current data in Appendix H. The wind and surface current data provide additional
information to help developers plan installation and operations & maintenance activities.
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10.4.1. Sea States: Frequency of Occurrence and Contribution to Wave Energy

Joint probability distributions of the significant wave height, H,,, and energy period, T¢,
are shown in Figure 111. Figure 111 (top) shows the frequency of occurrence of each binned
sea state and Figure 111 (bottom) shows the percentage contribution to the total wave
energy. Figure 111 (top) indicates that the majority of sea states are within the range 1 m
< H,0<35mand6s < T, <11 s; but a wide range of sea states are experienced at the
Humboldt Site, including extreme sea states caused by severe storms where H,,, exceeded
7 m. The site is well suited for testing WECs at various scales, including full-scale WECs,
and testing the operation of WECs under normal sea states. This would also be a desirable
site for commercial deployment. Although the occurrence of an extreme sea state for survival
testing of a full scale WEC is unlikely during a normal test period, the Humboldt Site wave
climate offers opportunities for survival testing of scaled model WECs.

As mentioned in the methodology (Section 2.2), previous studies show that sea states with
the highest occurrence do not necessarily correspond to those with the highest contribution
to total wave energy. The total wave energy in an average year is 282,600 kWh/m, which
corresponds to an average annual omnidirectional wave power of 32.2 kW/m. The most
frequently occurring sea state is within the range 1.5 m < H,,,0 < 2m and 6 s < T, < 7 s,
while the sea state that contributes most to energy is within the range 3 m < H,,p < 3.5 m
and 10 s < T, < 11 s. Several sea states occur at a similar frequency, and sea states within
2m< H,0<4.5mand 9s <7, < 12 s contribute a similar amount to energy.

Frequencies of occurrence and contributions to energy of less than 0.01% are not shown in
the figure for clarity. For example, the sea state within 0.5 m < H,p < 1mand4s < T, <
5 s has an occurrence of 0.02%. The contribution to total energy, however, is only 0.001%
and, therefore, does not appear in Figure 111 (bottom). Similarly, the sea state within 8 m
< Hpo<85mand 13 s < T, < 14 s has an occurrence of 0.007%, but the contribution to
total energy is 0.11%.

Curves showing the mean, 5" and 95" percentiles of wave steepness, H,,0/7, are also shown
in Figure 111. The mean wave steepness at the Humboldt Site is 0.0185 (~1/54), and the

95th percentile approaches 1/33.
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Figure 111: Joint probability distribution of sea states for the Humboldt Site. The top
figure is frequency of occurrence and the bottom figure is percentage of total energy,
where total energy in an average year is 282,600 kWh/m.

10.4.2. IEC TS Parameters

The monthly means of the six IEC TS parameters, along with the 5* and 95 percentiles,
are shown in Figure 112. The values in the figure are summarized in Table 14 in Appendix

C.

Monthly means of the omnidirectional wave power, J, significant wave height, H,,,, and
energy period, T., show the greatest seasonal variability compared to the other parameters.
Values are largest and vary the most during the winter months. These observations are
consistent with the relationship between wave power density, significant wave height and
energy period, where wave power density, .J, is proportional to the energy period, T,, and
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the square of the significant wave height, H,,.

The direction of maximum directionally resolved wave power (defined as the direction from
which waves arrive in degrees clockwise from north), §;, is fairly consistent from west/northwest,
and varies slightly between seasons. Seasonal variation of the spectral width, €y, and direc-
tionality coefficient (larger values indicate low directional spreading), is much less than the
other parameters and barely discernable. Monthly means for ¢, remain nearly constant
between 0.3 and 0.35. Similarly, monthly means for dy remain nearly constant at ~0.93.

In summary, the waves at the Humboldt Site, from the perspective of monthly means, have
a fairly consistent spectral width, are predominantly from the west/northwest, and exhibit
a wave power that has a narrow directional spread.

Wave roses of wave power and significant wave height, presented in Appendix C, Figure 164
and Figure 165, also show the predominant direction of the wave energy at the Humboldt
Site, with small shifts to the north and west. Figure 164 shows two dominant direction
sectors from west/northwest: 285° and 300°. Along the first direction sector, 285°, the
omnidirectional wave power density is at or below 35 kW /m approximately 19% of the time,
and greater than 35 kW /m about 15% of the time. Along the second direction sector, 300°,
the omnidirectional wave power density is at or below 35 kW /m approximately 27% of the
time, but greater than 35 kW /m about 9% of the time.
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Figure 112: The average, 5th and 95th percentiles of the six parameters at the Hum-
boldt site.

Monthly means, however, smear the significant variability of the six IEC parameters over
small time intervals as shown in plots of the parameters at 1-hour intervals in Figure 113
for a representative year. While seasonal patterns described for Figure 112 are still evident,
these plots show how sea states can vary abruptly at small time scales with sudden changes,
e.g., jumps in the wave power as a result of a storm.
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Figure 113: The six parameters of interest over a one-year period, March 2007 —
February 2008 at the Humboldt site.

10.4.3. Cumulative Distributions

Annual and seasonal cumulative distributions (a.k.a., cumulative frequency distributions)
are shown in Figure 114. Note that spring is defined as March - May, summer as June -
August, fall as September - November, and winter as December - February. The cumulative
distributions are another way to visualize and describe the frequency of occurrence of indi-
vidual parameters, such as H,,g and T.. A developer could use cumulative distributions to
estimate how often they can access the site to install or perform operations and maintenance
based on their specific device, service vessels, and diving operation constraints. For example,
if significant wave heights need to be less than or equal to 1 m for installation and recovery,
according to Figure 114, this condition occurs about 6% of the time on average within a given
year. If significant wave heights need to be less than or equal to 2 m for emergency main-
tenance, according to Figure 114, this condition occurs about 48% of the time on average
within a given year. Cumulative distributions, however, do not account for the duration of a
desirable sea state, or weather window, which is needed to plan deployment and servicing of
a WEC device at a test site. This limitation is addressed with the construction of weather
window plots in the next section.
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Figure 114: Annual and seasonal cumulative distributions of the significant wave height
(top) and energy period (bottom) at the Humboldt site.

10.4.4. Weather Windows

Figure 115 shows the number of weather windows at the Humboldt Site, when significant
wave heights are at or below some threshold value for a given duration, for an averaged
winter, spring, summer, and fall. In these plots, each occurrence lasts a duration that is
some multiple of 6-hours. The minimum weather window is, therefore, 6-hours in duration,
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and the maximum is 96-hours (4 days). The significant wave height threshold is the upper
bound in each bin and indicates the maximum significant wave height experienced during
the weather window. Note that the table is cumulative, so, for example, an occurrence
of H,,0 < 1m for at least 54 consecutive hours in the fall is included in the count for 48
consecutive hours as well. In addition, one 12-hour window counts would count as two 6-
hour windows. It is clear that there are significantly more occurrences of lower wave heights
during the summer than winter, which corresponds to increased opportunities for deployment
or operations and maintenance.

Weather window plots provide useful information at test sites when planning schedules for
deploying and servicing WEC test devices. For example, if significant wave heights need to
be less than or equal to 1 m for at least 12 consecutive hours to service a WEC test device at
the Humboldt Site with a given service vessel, there would be, on average, twenty weather
windows in the summer, but only one in the winter. When wind speed is also considered,
Figure 116 shows the average number of weather windows with the additional restriction of
wind speed, U < 15 mph. Note that wind data was not available from the hindcast, so data
from CFSR was used (see Section 2.3). For shorter durations (6- and 12-hour windows),
daylight is necessary. Windows with U <15 mph and only during daylight hours are shown
in Figure 117. Daylight was estimated as 5am — 10pm Local Standard Time (LST).
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Figure 115: Average cumulative occurrences of wave height thresholds (weather win-
dows) for each season at the Humboldt Site. Winter is defined as December - February,
spring as March - May, summer as June - August, and fall as September - November.
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Figure 116: Average cumulative occurrences of wave height thresholds (weather win-
dows) for each season at the Humboldt Site with an additional restriction of U < 15
mph.
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Figure 117: Average cumulative occurrences of wave height thresholds (weather win-
dows) for 6- and 12-hour durations with U < 15 mph and only during daylight hours
(bam — 10pm LST) at the Humboldt Site.

10.4.5. Extreme Sea States

The modified IFORM was applied using CDIP128 / NDBC46212 to generate the 100-year
environmental contour for the Humboldt Site shown in Figure 118. Selected sea states along
this contour are listed in Appendix H, Table 44. As stated in Section 1.2, environmental
contours are used to determine extreme wave loads on marine structures and design these
structures to survive extreme sea states of a given recurrence interval, typically 100-years. For
the Humboldt Site, the largest significant wave height estimated to occur every 100-years,
is approximately 10.9 m, and has an energy period of about 17.8 s. However, significant
wave heights lower than 10.9 m, with energy period less than or greater than 17.8 s, listed
in Appendix H, Table 44, could also compromise the survival of the WEC test device under
a failure mode scenario in which resonance occurred between the incident wave and WEC
device, or its subsystem. For comparison, 50- and 25-year return period contours are also
shown in Figure 118. The largest significant wave height on the 50-year contour is 10.4 m
with an energy period of about 17.5 s, and on the 25-year contour is 9.9 m and 17.1 s.
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Figure 118: 100-year contour for CDIP128 / NDBC 46212 (2004-2012).

10.4.6. Representative Wave Spectrum

All hourly discrete spectra measured at CDIP128 / NDBC 46212 for the most frequently
occurring sea states are shown in Figure 119. The most frequently occurring sea state,
which is within the range 1 m < H,,0 < 1.b m and 7s < T, < 8 s, was selected from a
JPD similar to Figure 36 in Section 5.4.1, but based on the CDIP128 / NDBC46212 buoy
data. As a result, the JPD, and therefore the most common sea states, generated from
buoy data are slightly different from that generated from hindcast data. For example, the
most frequently occurring sea state for the JPD generated from hindcast data is a half-meter
higher on bounds for H,,o (1.5 m < H,,0 < 2 m) and one second lower for T, (6 s < T, <
7 s). Often several sea states will occur at a very similar frequency, and therefore plots of
hourly discrete spectra for several other sea states are also provided for comparison. Each of
these plots includes the mean spectrum and standard wave spectra, including Bretschneider
and JONSWAP, with default constants as described in 2.2.

For the purpose of this study, the mean spectrum is the ‘representative’ spectrum for each sea
state, and the mean spectrum at the most common sea state, shown in Figure 44 (bottom-
left plot), is considered the ‘representative’ spectrum at the site. The hourly spectra vary
considerably about this mean spectrum, but this is partly reflective of the bin size chosen for
H.,,, and T,. Comparisons of the representative spectra in all plots with the Bretschneider
and JONSWAP spectra illustrate why modeled spectra with default constants, e.g., the shape
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parameter v = 3.3 for the JONSWAP spectrum, should be used with caution. Using the
constants provided in Section 2.2, the Bretschneider spectra are, at best, fair representations
of the mean spectra in Figure 119. If these modeled spectra were to be used at this site, it is
recommended that the constants undergo calibration against some mean spectrum, e.g., the
representative spectrum constructed here. Using the constants provided in Section 2.2, the
Bretschneider spectra are fair representations of the mean spectra in Figure 119, however
it does not capture the bimodal nature of the spectra. The mean measured spectra is the
best representation of the conditions, however, if these modeled spectra were to be used
at this site, it is recommended that the constants undergo calibration against some mean
spectrum, e.g., the representative spectrum constructed here. A better alternative may be
to explore other methods or spectral forms to describe bimodal spectra (e.g., Mackay 2011)
if it is known that the shape is not unimodal.
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204



11. SUMMARY AND CONCLUSIONS

This study provides a comprehensive characterization of eight U.S. WEC test sites. It in-
cludes important information on test site infrastructure and services, and catalogues detailed
met-ocean data and information derived from numerous data sources. Although there are
some differences in the quality of the data sources, e.g., the location of the buoy observations
with respect to the test site, and the period of record of the hindcast or buoy observations,
the data are processed using uniform and consistent methods. The characterization results,
therefore, allow reasonable comparisons between the wave resource characteristics among
the different test sites, and selection of test sites that are most suitable for a given device or
current testing needs and objectives.

Plots useful for designing WEC test devices include the JPDs, seasonal variation of the six
IEC bulk parameters, representative wave spectra, and environmental contours (extreme sea
states). They also provide a useful and comprehensive summary of the wave climate and
wave energy resource. Cumulative distributions and weather windows can aid in planning
WEC deployments and servicing schedules based on the requirements of the service vessel.

The characterization results also allow assessment of the opportunities and risks of testing
at each site, how they vary seasonally, and how they can change abruptly within a matter
of hours or days. Large waves, associated with both normal and extreme sea states, provide
opportunities for testing full scale WEC devices, but they can increase the challenges and
risks of testing at the site. These include reduced access to the test device, for deployment
or operation and maintenance, and increased risk of damaging or destroying the test device.

NETS is a test site offshore of Newport, OR, where the average annual omnidirectional wave
power is 36.8 kW /m. The wave climate at the site varies significantly by season. Calmer
seas (lower significant wave heights and energy periods) occur in the summer, while energetic
seas occur in the winter, dominated by swells further away in the North Pacific. Larger wave
heights occur in the winter months, with a number of events each year exceeding 7 m, and
some severe storms producing significant wave heights over 10 m. There are significantly
more weather windows that would allow for deployment, and operations and maintenance, in
the summer than any other season. Winter would provide opportunities for survival testing
for devices at high TRL levels.

WETS is a test site offshore of Oahu, HI, where the average annual omnidirectional wave
power is 14.3 kW /m at the 80 m berth. The wave climate varies seasonally, but with less
variability than the Pacific Northwest. Calmer seas occur during the summer, produced by
year-round trade winds from the northeast, while more energetic seas occur in the winter
made up of both wind waves and swell from the North Pacific. Year-round testing has been
done at the site because significant wave heights rarely exceed 3 m in the winter. Weather
windows are higher in summer, but with less of a difference from winter as other sites,
and there are relatively few longer weather windows that might be appropriate for deploy-
ment. However, shorter weather windows (opportunities for operations and maintenance),
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especially for H,,o limits of 1.5 m or more remain high throughout the year.

The Jennette’s Pier Wave Energy Test Site is offshore of Nags Head, NC, where the average
annual omnidirectional wave power is 6.08 kW /m at 12.6 m depth. The wave climate varies
seasonally, but with less variability than the Pacific Northwest. Calmer seas occur during
the summer, while more energetic seas occur in the winter. Significant wave heights rarely
exceed 3 m, however there are some instances greater than 5 m. Weather windows are high
throughout the year due to the lower wave heights, including longer windows that might be
appropriate for deployment. There are significantly more weather windows in the summer
than winter.

The USACE FRF is offshore of Duck, NC, where the average annual omnidirectional wave
power is 3.29 kW/m at 4.8 m depth, although areas in state waters up to depths of ap-
proximately 25 m are available for testing. The test site has similar characteristics to the
Jennette’s Pier Wave Energy Test Site, with calmer seas during the summer, and more en-
ergetic seas in the winter. Significant wave heights rarely exceed 3 m at the 4.8 m depth
location, and would not typically exceed 5 m at depths available for testing. Similarly to
the Jennette’s Pier site, weather windows are high throughout the year, including longer
windows that might be appropriate for deployment. There are significantly more weather
windows in the summer than winter.

The PMEC Lake Washington test site can be considered a proof of concept or ‘nursery’
site, where the average annual omnidirectional wave power is 0.04 kW /m. The wave climate
varies by season, with calm conditions in the summer due to weak northerly winds and more
energetic conditions in the winter due to strong southerly winds. The climate is event driven
by local wind, and there are periods of very low waves throughout the year. There are no
occurrences of significant wave height greater than 1 m, so it is assumed there are ample
opportunities for deployment and mainteance in any season, depending on wind restrictions
and competing uses of the area in the lake.

SETS is a potential test site located west of NETS, in slightly deeper water depths (58-75 m),
where the average annual omnidirectional wave power is 40.7 kW/m. The characteristics
are very similar to NETS, however the wave power is greater and there is slightly more
directional spreading. Larger wave heights occur in the winter months, with a number of
events each year exceeding 8 m. Similarly to NETS, there are significantly more weather
windows that would allow for deployment, and operations and maintenance, in the summer

than any other season. Winter would provide opportunities for survival testing for devices
at high TRL levels.

The CalWave proposed Central Coast WEC Test Site at Vandenberg Air Force Base includes
several options for berth locations, although this catalogue focuses on two potential offshore
siting alternatives, the ‘South’, and ‘South by Southeast’ sites, which are located outside state
waters. The average annual omnidirectional wave power is 39.9 kW /m at the South site and
31.4 kW /m at the South by Southeast site. The wave climate at the site varies significantly
by season. Calmer seas occur in the summer, while energetic seas occur in the winter,
dominated by swells further away in the North Pacific. Typically the site experiences low
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directional spread in the waves (nearly unidirectional), however there are occasional swells
from the south/southwest that increase the directional spreading. There are significantly
more weather windows that would allow for deployment, and operations and maintenance,
in the summer than any other season. Depending on restrictions for deployment, finding a
suitable weather window may be difficult given that there are, on average, no windows longer
than 18 hours for significant wave heights less than 1 m. Winter could provide opportunities
for survival testing for devices at high TRL levels.

The Humboldt site is a potential test or commercial deployment site, where the average
annual omnidirectional wave power is 32.2 kW/m. Similarly to NETS, the wave climate
varies significantly by season with calmer wind waves in the summer and much more energetic
seas dominated by swell in the winter. A small percentage of sea states exceed 7 m each
winter. The Humboldt Site exhibits the very low directional spreading (nearly unidirectional
waves). Similarly to SETS, NETS, and the CalWave Central Coast site, winter storms can
be severe at Humboldt, with significant wave heights exceeding 5 m approximately 5% of
the time in December.

With the exception of the Lake Washington site, wave direction at the sites generally does
not align with the local wind direction because the waves are associated with swells and
far-field winds, and they tend to align with the bathymetric contours as they approach
shore. However, at most of the sites there is a slight shift towards the wind direction in the
summer when swells are less dominant. The local wind data is important for servicing, and
is incorporated into the weather windows. It may also be important for determining loads
on a low-draft device with a significant above-water profile.

In general, the standard spectra did not match the mean (‘representative’) measured spectra
at the sites very well, and the typical forms of JONSWAP and Bretschneider do not capture
bimodal spectra. Therefore these standard spectra should be used with caution, and the
mean measured spectra should be considered the best representation of conditions. This
should be kept in mind especially for sites that do not exhibit unimodal spectra, and if the
measured spectra cannot be used for an analysis, alternative parametric forms should be
explored (e.g., Mackay 2011). The wide spread of spectral shapes that occur within a bin of
H,0 and T,) should also be considered, and perhaps smaller bin sizes should be used when
characterizing the typical spectra.

The monthly mean surface currents at all sites are below 0.4 m/s, well below the IEC TS
value of 1.5 m/s for depth-averaged current speed, which is recommended as the threshold
beyond which it is important to account for ocean current effects in wave modeling. As
surface currents are generally higher than depth-averaged currents, ocean currents at all the
sites are not expected to significantly influence the wave dynamics.
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Appendix A: PACIFIC MARINE ENERGY CENTER (PMEC):
NORTH ENERGY TEST SITE (NETS)

A.1. TEC TS Parameter Values

Table 9: The average, 5" and 95" percentiles of the six parameters at NETS (see
Figure 7).

J[kW/m] Hpmo[m)] Te[s]

5% | Mean | 95% | 5% | Mean | 95% | 5% | Mean | 95%
March 94 52.2 141.6 | 1.46 2.86 4.75 | 7.65 9.92 12.80
April 6.5 36.8 96.3 | 1.16 | 2.39 | 4.03 | 7.65 | 9.75 | 12.04
May 3.6 16.1 42.1 | 0.87 1.71 2.84 | 7.01 8.76 10.84
June 3.7 12.2 33.6 | 0.88 1.52 2.68 | 6.89 8.84 11.39
July 2.3 9.3 19.0 | 0.73 1.39 2.05 | 6.72 8.41 10.46
August 2.8 8.7 20.5 | 0.83 1.33 2.09 | 6.60 8.45 10.70
September | 4.3 18.1 52.7 | 0.98 1.74 3.04 | 7.37 | 9.31 11.78
October 7.8 38.5 106.5 | 1.26 2.43 4.19 | 7.86 9.79 12.28
November | 9.1 62.4 162.8 | 1.35 3.09 5.10 | 7.75 | 10.05 | 12.90
December 8.6 69.3 203.0 | 1.25 3.13 5.45 | 8.12 | 10.66 | 13.95
January 11.3 66.6 173.5 | 1.43 3.08 5.06 | 8.19 | 10.88 | 14.13
February 11.1 52.4 141.4 | 1.43 2.77 4.70 | 8.24 | 10.70 | 13.44

€0 6;[°] dg

5% | Mean | 95% | 5% | Mean | 95% | 5% | Mean | 95%
March 0.33 | 0.43 0.54 | 242.5 | 276.0 | 297.5 | 0.82 0.91 0.96
April 0.33 0.45 0.55 | 252.5 | 280.3 | 297.5 | 0.79 0.91 0.96
May 0.32 0.43 0.55 | 247.5 | 274.6 | 302.5 | 0.80 0.89 0.95
June 0.33 0.45 0.59 | 242.5 | 272.1 | 302.5 | 0.79 0.88 0.94
July 0.34 0.45 0.56 | 242.5 | 278.6 | 302.5 | 0.75 0.86 0.93
August 0.33 | 0.44 0.58 | 252.5 | 279.0 | 302.5 | 0.78 0.86 0.94

September | 0.31 | 0.43 0.57 | 247.5 | 280.6 | 302.5 | 0.81 | 0.89 0.95
October 0.30 | 041 0.52 | 2475 | 281.2 | 302.5 | 0.84 | 0.92 0.96
November | 0.29 | 0.41 0.51 | 2475 | 280.2 | 302.5 | 0.83 | 0.92 0.97
December | 0.27 | 0.41 0.53 | 237.5 | 276.5 | 297.5 | 0.82 | 0.92 0.97
January 0.28 | 0.42 0.53 | 2425 | 2754 | 2975 | 0.85 | 0.93 0.97
February 0.27 | 041 0.54 | 237.5 | 276.8 | 302.5 | 0.82 | 0.92 0.97
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A.2. Wave Roses

The annual wave rose of omnidirectional wave power, J, and direction of maximum direc-
tionally resolved wave power, 6;, is shown in Figure 120, and essentially mirrors that for
significant wave height, H,,y, and 6; shown in Figure 121.
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Figure 120: Annual wave rose of omnidirectional wave power and direction of max-
imally resolved wave power. Values of J greater than 40 kW /m are included in the
top bin as shown in the legend.
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Figure 121: Annual wave rose of significant wave height and direction of maximally
resolved wave power. Values of H,,; greater than 6 m are included in the top bin as
shown in the legend.
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A.3. Extreme Sea States

Table 10: Selected values along the 100-year contour for NDBC46050 (see Figure 13).

Signiﬁc?nt Energy
wave height .
(] period [s]
1 3.80
2 4.58
3 5.32
4 6.00
5 6.64
6 7.25
7 7.83
8 8.39
9 8.95
10 9.50
11 10.07
12 10.65
13 11.27
14 11.94
15 12.71
16 13.66
17 15.14
17.31 16.57
17 18.04
16 19.63
15 20.65
14 21.48
13 22.18
12 22.79
11 23.34
10 23.84
9 24.29
8 24.69
7 25.05
6 25.36
5 25.63
4 25.85
3 26.02
2 26.12
1 26.15

220



A.4. Wind Data

The wind data for this site (obtained from CFSR), is the mean of magnitude and direction
taken at 44.5 N, 124.5 W and 45 N, 124.5 W, which are the nearest data points to NETS. Note
that the central location between these two points is approximately 30 km west /northwest of
the test site (Figure 1). The average monthly values, along with the 5* and 95 percentiles,
of wind are shown in Figure 122. The values are also tabulated in Table 11. The annual and
seasonal wind roses are shown in Figure 123.
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Figure 122: Monthly wind velocity and direction obtained from CSFR data during the
period 1/1/1979 to 12/31/2014 at 44.75 N, 124.5 W, located 30 km west/northwest
of NETS (Figure 1).
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Figure 123: (a) Annual and (b) seasonal wind roses of velocity and direction obtained
from CSFR data during the period 1/1/1979 to 12/31/2014. Data taken at 44.75 N,
124.5 W, located approximately 30 km west/northwest of NETS (Figure 1).
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Table 11: Monthly wind velocity and direction obtained from CSFR data during the
period 1/1/1979 to 12/31/2014 at 44.75 N, 124.5 W, located approximately 30 km
west /northwest of NETS.

U[m/s] Direction[°]
5% | Mean | 95% Mean
March 2.1 7.5 14.6 222
April 2.0 6.8 12.7 267
May 1.8 6.3 11.4 316
June 1.9 6.4 11.3 332
July 1.7 6.5 11.6 348
August 1.3 5.7 10.8 348
September | 1.4 6.0 11.2 350
October 1.7 6.5 13.0 274
November | 2.1 7.8 16.0 204
December | 2.3 8.4 16.7 192
January 2.5 8.2 16.1 188
February 2.2 7.9 15.6 192
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A.5. Ocean Surface Current Data

The surface current data (obtained from OSCAR) used for this site is located at 44.5 N,
125.5 W. There is data located closer to the site at 44.5 N, 124.5 W, however the period of
record is short (about 2 years). Data from the two years available was compared at both
locations. Surface current speeds at 124.5 W are slightly higher in the summer than at 125.5
W, however overall the patterns are similar. Therefore, the data point further out (125.5 W)
with the longer period of record (about 20 years) was used for consistency with the other
sites. The average monthly values, along with the 5 and 95" percentiles, of current are
shown in Figure 124. These data points are listed in Table 12. The annual and seasonal
current roses are shown in Figure 125.
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Figure 124: Monthly ocean surface current velocity and direction obtained from OS-
CAR at 44.5 N, 125.5 W, located approximately 110 km southwest of NETS. Data
period 1/1/1993 to 12/30/2014.
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Figure 125: (a) Annual and (b) seasonal current roses of ocean surface current velocity
and direction obtained from OSCAR at 44.5 N, 125.5 W. Data period 1/1/1993 to
12/30/2014.

225



Table 12: Monthly surface current velocity and direction obtained from OSCAR data
during the period 1/1/1993 to 12/30/2014 at 44.5 N, 125.5 W.

U[m/s] Direction|[°]
5% | Mean | 95% | 5% | Mean | 95%
March 0.014 | 0.035 | 0.058 | -95 -23 3
April 0.003 | 0.037 | 0.061 | -88 -7 16
May 0.010 | 0.037 | 0.055 | -110 3 15
June 0.009 | 0.040 | 0.062 | -83 5 15
July 0.015 | 0.052 | 0.072 | -8 20 28
August 0.031 | 0.057 | 0.079 | -7 21 27
September | 0.030 | 0.056 | 0.082 | -27 14 26
October 0.020 | 0.052 | 0.079 | -48 5 27
November | 0.009 | 0.049 | 0.075 | -85 -11 14
December | 0.019 | 0.043 | 0.078 | -107 -27 12
January 0.007 | 0.030 | 0.056 | -104 -39 7
February 0.004 | 0.030 | 0.053 | -108 -18 20
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Appendix B: U.S. NAVY WAVE ENERGY TEST SITE (WETS)

B.1. IEC TS Parameter Values

Table 13: The average, 5" and 95" percentiles of the six parameters at Kaneohe II
(see Figure 23).

J[kW/m] Hpmo[m] Te[s]

5% | Mean | 95% | 5% | Mean | 95% | 5% | Mean | 95%
March 4.0 18.1 47.5 | 0.93 1.85 3.07 | 6.8 8.7 11.8
April 3.9 14.1 33.1 | 1.01 1.76 2.68 | 6.4 7.9 10.5
May 2.5 8.6 18.9 | 0.82 1.45 2.17 | 6.1 7.3 9.3
June 2.6 6.9 13.1 | 0.90 1.41 1.94 | 5.7 6.6 8.1
July 3.0 7.4 14.2 | 0.97 1.46 2.00 | 5.7 6.6 7.6
August 2.4 6.6 13.3 | 0.87 1.36 1.91 | 5.6 6.6 8.0

September | 2.7 7.3 154 | 0.88 | 1.33 1.88 | 6.0 7.4 9.8
October 4.1 11.3 25.9 | 1.00 | 1.55 227 | 6.4 8.2 11.1
November | 5.1 19.0 50.6 | 1.09 | 1.87 2.99 | 6.9 8.9 12.0
December | 5.0 19.7 50.6 | 1.02 | 1.87 3.05 | 7.1 9.5 12.7
January 4.6 18.1 46.3 | 095 | 1.76 290 | 7.2 9.7 13.0
February 4.6 18.2 46.5 | 0.98 | 1.80 292 | 7.0 9.3 12.4

€0 0;[°] dg

5% | Mean | 95% | 5% | Mean | 95% | 5% | Mean | 95%
March 0.29 0.38 0.51 | -22.5 23.4 67.5 | 0.66 0.82 0.94
April 0.28 0.37 049 | -7.5 34.4 67.5 | 0.67 0.81 0.91
May 0.28 0.37 048 | -7.5 40.2 67.5 | 0.68 | 0.82 0.92
June 0.31 0.37 0.46 | 22.5 50.9 67.5 | 0.71 0.84 0.91
July 0.31 0.35 0.43 | 37.5 53.3 67.5 | 0.78 | 0.87 0.91
August 0.30 0.36 0.45 | 37.5 54.3 67.5 | 0.74 0.86 0.91

September | 0.28 | 0.38 049 | -7.5 36.7 67.5 | 0.71 | 0.82 0.91
October 0.27 | 0.38 0.51 | -7.5 25.2 52.5 1 0.69 | 0.81 0.93
November | 0.27 | 0.38 0.50 | -7.5 22.6 67.5 | 0.68 | 0.82 0.93
December | 0.28 | 0.38 0.50 | -22.5 | 16.6 67.5 | 0.67 | 0.82 0.94
January 0.29 | 0.38 0.50 | -22.5 | 10.4 67.5 | 0.67 | 0.84 0.95
February 0.28 | 0.38 0.52 | -22.5 | 15.0 67.5 | 0.66 | 0.83 0.95
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Table 14: The average, 5" and 95" percentiles of the six parameters at WETS (see
Figure 24).

J[EW /m]| Hpo[m] T.[s]

5% | Mean | 95% | 5% | Mean | 95% | 5% | Mean | 95%
March 4.4 20.1 52.5 | 1.00 1.98 3.29 | 6.81 8.70 11.72
April 4.5 15.9 36.5 | 1.08 1.89 2.88 | 6.46 7.93 10.38
May 2.8 9.8 21.1 | 0.88 1.57 2.35 | 6.09 7.30 9.33
June 3.1 8.1 154 | 0.97 1.52 2.10 | 5.75 6.68 8.11
July 3.5 8.6 16.7 | 1.04 1.57 2.17 | 5.79 6.63 7.71
August 2.8 7.7 15.6 | 0.94 1.47 2.08 | 5.67 6.65 8.10

September | 3.1 8.2 174 |1 094 | 1.43 2.02 | 6.01 | 743 9.73
October 4.5 12.4 277 |1 1.06 | 1.65 241 | 646 | 8.22 | 11.09
November | 5.8 20.8 53.9 | 1.17 | 2.00 3.17 1 695 | 889 | 11.92
December | 5.6 21.7 54.7 | 1.09 | 2.00 3.24 | 719 | 944 | 12.63
January 5.0 19.7 499 | 1.01 1.86 3.06 | 7.26 | 9.73 | 12.89
February 5.1 19.8 49.7 1 1.04 | 191 3.08 | 7.08 | 933 | 12.39

€0 0;[°] dg

5% | Mean | 95% | 5% | Mean | 95% | 5% | Mean | 95%
March 0.28 0.38 0.50 | -22.5 28.4 67.5 | 0.64 0.81 0.94
April 0.27 | 0.36 048 | -7.5 39.8 67.5 | 0.66 | 0.80 0.91
May 0.28 0.36 0.47 | -7.5 45.5 82.5 | 0.67 0.81 0.92
June 0.30 0.36 0.45 | 22.5 55.9 67.5 | 0.70 0.84 0.92
July 0.30 0.35 0.42 | 37.5 58.2 67.5 | 0.78 0.87 0.91
August 0.30 0.35 0.44 | 37.5 59.9 67.5 | 0.74 0.86 0.92

September | 0.28 | 0.37 0.48 | -7.5 41.5 67.5 | 0.69 | 0.82 0.91
October 0.27 | 0.37 0.50 | -7.5 29.6 67.5 | 0.67 | 0.80 0.93
November | 0.26 | 0.37 0.49 | -7.5 27.5 67.5 | 0.66 | 0.81 0.93
December | 0.27 | 0.37 0.49 | -22.5 | 21.6 67.5 | 0.65 | 0.81 0.94
January 0.28 | 0.37 0.49 | -22.5 | 14.5 67.5 | 0.65 | 0.83 0.95
February 0.27 | 0.37 0.51 | -22.5 | 19.2 67.5 | 0.64 | 0.82 0.95
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B.2. Wave Roses

The annual wave rose of omnidirectional wave power, J, and direction of maximum direc-
tionally resolved wave power, 6;, is shown in Figure 126, and essentially mirrors that for
significant wave height, H,,y, and 6; shown in Figure 127.
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Figure 126: Annual wave rose of omnidirectional wave power and direction of max-
imum directionally resolved wave power. Values of J greater than 40 kW /m are
included in the top bin as shown in the legend. Figure produced by Ning Li (Li and
Cheung 2014).
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Figure 127: Annual wave rose of significant wave height and direction of maximum
directionally resolved wave power. Values of H,,j greater than 6 m are included in the
top bin as shown in the legend. Figure produced by Ning Li (Li and Cheung 2014).
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B.3. Extreme Sea States

Table 15: Selected values along the 100-year contour for CDIP098 (NDBC 51202) (see
Figure 30).
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wave height
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B.4. Wind Data

The wind data for this site (obtained from CFSR), is taken at 21.5 N, 157.5 W located
approximately 25 km east of WETS (Figure 20), which is the nearest data point to the site.
The average monthly values, along with the 5" and 95" percentiles, of wind are shown in
Figure 128. The values are also tabulated in Table 16. The annual and seasonal wind roses
are shown in Figure 129.
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Figure 128: Monthly wind velocity and direction obtained from CSFR data during
the period 1/1/1979 to 12/31/2014 at 21.5 N, 157.5 W, located approximately 25 km
east of WETS (Figure 20).

232



()

U [m/s]

M >=16

EH12-16

“ . 8 -12
L 3 W4 -8

~. . SOUTH..-~ mo-4

Figure 129: (a) Annual and (b) seasonal wind roses of velocity and direction obtained
from CSFR data during the period 1/1/1979 to 12/31/2014. Data taken at 21.5 N,
157.5 W, located approximately 25 km east of WETS (Figure 20).
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Table 16: Monthly wind velocity and direction obtained from CSFR data during the
period 1/1/1979 to 12/31/2014 at 21.5 N, 157.5 W, located approximately 25 km east
of WETS.

U[m/s] Direction[°]
5% | Mean | 95% Mean
March 2.3 7.8 12.9 75
April 2.3 8.1 12.5 75
May 2.1 7.3 11.1 77
June 4.4 8.2 11.0 7
July 5.1 8.4 11.2 76
August 4.2 8.1 11.1 77
September | 2.7 7.2 10.4 78
October 2.1 7.1 11.0 80
November | 2.1 7.6 12.2 7
December | 1.8 7.3 12.9 79
January 1.7 6.8 12.3 76
February 1.8 7.0 12.3 74
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B.5. Ocean Surface Current Data

The surface current data (obtained from OSCAR), is located at 21.5 N, 157.5 W, the closest
data point to shore. The average monthly values, along with the 5* and 95" percentiles, of
current are shown in Figure 130. These data points are listed in Table 17. The annual and
seasonal current roses are shown in Figure 131.
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Figure 130: Monthly ocean surface current velocity and direction obtained from OS-
CAR at 21.5 N, 157.5 W, located approximately 25 km east of WETS. Data period
1/1/1993 to 12/30/2014.
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Figure 131: (a) Annual and (b) seasonal current roses of ocean surface current velocity
and direction obtained from OSCAR at 21.5 N, 157.5 W, located approximately 25 km
east of WETS. Data period 1/1/1993 to 12/30/2014.
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Table 17: Monthly surface current velocity and direction obtained from OSCAR data
during the period 1/1/1993 to 12/30/2014 at 21.5 N, 157.5 W, located approximately
25 km east of WETS.

U[m/s] Direction[°]

5% | Mean | 95% | 5% | Mean | 95%
March 0.017 | 0.048 | 0.084 | &4 126 190
April 0.029 | 0.062 | 0.103 | 94 130 184
May 0.033 | 0.058 | 0.105 | 92 127 196
June 0.029 | 0.064 | 0.104 | 101 126 191
July 0.031 | 0.073 | 0.126 | 96 120 184
August 0.029 | 0.071 | 0.134 | 93 123 192

September | 0.016 | 0.063 | 0.132 | 92 124 211
October 0.023 | 0.062 | 0.112 | &9 125 216
November | 0.022 | 0.061 | 0.121 | 95 122 202
December | 0.012 | 0.052 | 0.099 | 88 122 183
January 0.011 | 0.040 | 0.093 | 78 113 198
February 0.008 | 0.043 | 0.094 | 85 121 189
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Appendix C: JENNETTE’S PIER WAVE ENERGY TEST CEN-
TER

C.1. IEC TS Parameter Values

Table 18: The average, 5" and 95" percentiles of the six parameters at Jennette’s
Pier (see Figure 37).

J[EW /m] Hpp[m] Te[s]

5% | Mean | 95% | 5% | Mean | 95% | 5% | Mean | 95%
March 0.80 9.07 31.42 | 0.50 1.28 2.56 | 4.74 7.08 10.35
April 0.57 5.83 20.03 | 0.43 1.04 2.15 | 4.67 6.74 9.54
May 0.46 4.19 14.25 | 0.39 0.88 1.88 | 4.61 6.42 8.68
June 0.39 1.90 5.83 | 0.36 0.68 1.28 | 4.51 6.06 7.60
July 0.35 1.41 3.03 | 0.33 0.59 0.97 | 4.63 6.06 7.49
August 0.36 3.00 8.54 | 0.35 0.74 1.48 | 4.48 6.06 8.35

September | 0.56 | 7.35 | 28.90 | 0.43 | 1.11 2.52 | 458 | 6.67 | 10.30
October 0.57 | 8.06 |31.62]0.44 | 1.19 2.62 | 4.59 | 6.61 9.83
November | 0.60 | 8.04 | 24.05 | 0.43 | 1.21 234 | 472 6.80 9.84
December | 0.69 | 8.12 | 2845 | 0.47 | 1.24 249 | 473 | 6.82 9.88
January 0.72 | 7.74 | 26.58 | 0.46 | 1.24 246 | 487 | 6.85 9.50
February 0.88 | 841 |32.16 | 0.51 | 1.27 263 | 489 | 6.97 9.84

€0 0;[°] do

5% | Mean | 95% | 5% | Mean | 95% | 5% | Mean | 95%
March 0.24 | 0.35 0.46 | 25 73.1 115 | 0.72 0.87 0.96
April 0.24 0.34 0.46 | 35 79.1 115 | 0.70 0.87 0.96
May 0.24 0.33 0.44 | 45 86.8 115 | 0.72 0.88 0.96
June 0.24 0.33 0.44 | 55 96.9 125 | 0.73 0.89 0.96
July 0.24 0.33 0.44 | 65 102.7 125 | 0.74 0.90 0.96
August 0.24 | 0.33 0.44 | 55 93.7 115 | 0.75 0.89 0.96

September | 0.24 | 0.34 0.46 | 45 81.6 115 | 0.73 | 0.88 0.96
October 0.24 | 0.34 0.45 | 35 73.2 115 | 0.72 | 0.88 0.96
November | 0.25 | 0.35 0.46 | 25 70.3 115 | 0.70 | 0.87 0.96
December | 0.25 | 0.36 047 | 15 65.6 115 | 0.68 | 0.86 0.95
January 0.25 | 0.36 0.47 | 15 66.6 115 | 0.68 | 0.85 0.95
February 0.24 | 0.35 0.47 | 25 68.8 115 | 0.69 | 0.86 0.96
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C.2. Wave Roses

The annual wave rose of omnidirectional wave power, J, and direction of maximum direc-
tionally resolved wave power, 6;, is shown in Figure 132, and essentially mirrors that for
significant wave height, H,,y, and 6; shown in Figure 133.
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Figure 132: Annual wave rose of omnidirectional wave power and direction of max-
imally resolved wave power. Values of J greater than 40 kW /m are included in the
top bin as shown in the legend.
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Figure 133: Annual wave rose of significant wave height and direction of maximally
resolved wave power. Values of H,,; greater than 6 m are included in the top bin as
shown in the legend.

C.3. Extreme Sea States

Table 19: Estimates of extreme significant wave height values using the generalized
extreme value distribution (see Figure 43).

Return Significant
period wave
[years] height [m]
10 6.23
25 6.79
50 7.19
100 7.55
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Table 20: Estimates of extreme significant wave height values using the peak over
thresholds method (see Figure 44).

Return Significant
period wave
[years] height [m)]
10 7.34
25 7.81
50 8.14
100 8.46
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C.4. Wind Data

The wind data for this site (obtained from CFSR), is taken at 36 N, 75.5 W located approx-
imately 12 km northeast of the site (Figure 35, which is the nearest data point to the site).
The average monthly values, along with the 5" and 95" percentiles, of wind are shown in
Figure 134. The values are also tabulated in Table 21. The annual and seasonal wind roses
are shown in Figure 135.
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Figure 134: Monthly wind velocity and direction obtained from CSFR data during
the period 1/1/1979 to 12/31/2014 at 36 N, 75.5 W, located approximately 12 km
northeast of the the Jennette’s Pier site (Figure 35).
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Figure 135: (a)Annual and (b) seasonal wind roses of velocity and direction obtained
from CSFR data during the period 1/1/1979 to 12/31/14. Data taken at 36 N, 75.5
W, located approximately 12 km northeast of the the Jennette’s Pier site (Figure 35).
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Table 21: Monthly wind velocity and direction obtained from CSFR data during
the period 1/1/1979 to 12/31/2014 at 36 N, 75.5 W, located approximately 12 km
northeast of Jennette’s Pier.

U[m/s] Direction[°]
5% | Mean | 95% Mean
March 2.5 7.8 13.9 317
April 2.4 7.3 13.1 274
May 2.2 6.5 11.5 212
June 1.9 5.9 10.1 197
July 1.8 5.7 9.7 207
August 1.8 5.6 9.7 170
September | 2.0 6.4 12.1 52
October 2.1 6.9 12.6 357
November | 2.3 7.6 13.7 323
December | 2.5 8.2 14.5 311
January 2.8 8.5 14.7 308
February 2.6 8.1 14.4 319
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C.5. Ocean Surface Current Data

The surface current data (obtained from OSCAR), is located at 36.5 N, 75.5.5 W, the closest
data point to shore. The data point at 35.5 N, 75.5 W, which would be closer to the site, is
located west of the Outer Banks. The average monthly values, along with the 5* and 95"
percentiles, of current are shown in Figure 136. These data points are listed in Table 22.
The annual and seasonal current roses are shown in Figure 137.
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Figure 136: Monthly ocean surface current velocity and direction obtained from OS-
CAR at 36.5 N, 75.5 W, located approximately 60 km north/northeast of Jennette’s
Pier. Data period 1/1/1993 to 12/31/2014.
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Figure 137: (a) Annual and (b) seasonal current roses of velocity and direction ob-
tained from OSCAR at 36.5 N, 75.5 W, located approximately 60 km north/northeast
of Jennette’s Pier. Data period 1/1/1993 to 12/31/2014.
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Table 22: Monthly surface current velocity and direction obtained from OSCAR data
during the period 1/1/1993 to 12/31/2014 at 36.5 N, 75.5 W, located approximately
60 km north/northeast of Jennette’s Pier.

U[m/s] Direction[°]

5% | Mean | 95% | 5% | Mean | 95%
March 0.177 | 0.314 | 0.443 | 235 246 253
April 0.143 | 0.321 | 0.469 | 239 244 256
May 0.127 | 0.325 | 0.476 | 238 242 261
June 0.226 | 0.339 | 0.516 | 239 243 259
July 0.231 | 0.385 | 0.629 | 241 241 251
August 0.269 | 0.370 | 0.564 | 243 239 245

September | 0.222 | 0.357 | 0.548 | 239 239 245
October 0.211 | 0.338 | 0.572 | 238 240 249
November | 0.219 | 0.323 | 0.492 | 244 240 239
December | 0.238 | 0.324 | 0.507 | 239 241 245
January 0.208 | 0.333 | 0.524 | 242 243 238
February 0.168 | 0.325 | 0.485 | 241 245 249
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Appendix D: U.S. ARMY CORPS OF ENGINEERS (USACE) FIELD
RESEARCH FACILITY (FRF)

D.1. IEC TS Parameter Values

Table 23: The average, 5" and 95" percentiles of the six parameters at USACE FRF
(see Figure 37).

J[kW /m)] Hppno[m] Te[s]

5% | Mean | 95% | 5% | Mean | 95% | 5% | Mean | 95%
March 0.54 4.54 13.05 | 0.45 1.07 1.93 | 4.42 6.86 10.03
April 0.40 3.15 10.53 | 0.38 0.89 1.76 | 4.35 6.53 9.10
May 0.32 2.35 8.46 | 0.34 0.76 1.61 | 4.40 6.28 8.39
June 0.28 1.30 3.82 | 0.32 0.61 1.12 | 4.30 5.95 7.62
July 0.25 1.02 2.23 | 0.29 0.55 0.87 | 4.36 5.94 7.62
August 0.26 1.75 5.81 | 0.31 0.66 1.34 | 4.26 5.96 8.45

September | 0.41 | 3.89 | 14.10 | 0.38 | 0.95 2.01 | 441 | 6.64 | 10.44
October 0.41 | 4.09 | 14.01 | 0.40 | 1.00 199 | 434 | 6.48 9.66
November | 0.42 | 4.23 | 12.13 | 0.41 1.03 1.87 | 443 | 6.65 9.74
December | 047 | 429 | 13.15 | 042 | 1.05 1.94 | 442 | 6.65 9.68
January 047 | 439 | 13.21 | 043 | 1.07 1.95 | 448 | 6.70 9.36
February 0.62 | 4.51 14.04 | 0.47 | 1.08 1.99 | 454 | 6.80 9.66

€0 6;[°] dg

5% | Mean | 95% | 5% | Mean | 95% | 5% | Mean | 95%
March 0.25 0.37 0.51 | 35 73.4 105 | 0.79 | 0.90 0.97
April 0.25 0.37 0.52 | 45 78.4 105 | 0.78 0.90 0.97
May 0.24 0.35 0.49 | 55 83.5 105 | 0.79 0.91 0.97
June 0.24 0.36 0.49 | 65 90.4 115 | 0.80 0.91 0.96
July 0.24 0.36 0.50 | 65 94.2 115 | 0.80 0.91 0.96
August 0.24 | 0.35 0.48 | 55 88.0 115 | 0.80 | 0.91 0.96

September | 0.24 | 0.35 0.48 | 55 79.5 105 | 0.81 | 0.91 0.97
October 0.25 | 0.36 0.48 | 45 73.6 105 | 0.79 | 0.91 0.97
November | 0.25 | 0.37 0.51 | 35 T1.7 105 | 0.77 | 0.89 0.97
December | 0.25 | 0.38 0.53 | 35 68.0 105 | 0.75 | 0.89 0.96
January 0.25 | 0.38 0.55 | 35 68.6 105 | 0.73 | 0.88 0.96
February 0.25 | 0.38 0.53 | 35 70.0 105 | 0.76 | 0.89 0.97
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D.2. Wave Roses

The annual wave rose of omnidirectional wave power, J, and direction of maximum direc-
tionally resolved wave power, 6;, is shown in Figure 138, and essentially mirrors that for
significant wave height, H,,y, and 6; shown in Figure 139.
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Figure 138: Annual wave rose of omnidirectional wave power and direction of max-
imally resolved wave power. Values of J greater than 40 kW /m are included in the
top bin as shown in the legend.
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Figure 139: Annual wave rose of significant wave height and direction of maximally
resolved wave power. Values of H,,; greater than 4 m are included in the top bin as
shown in the legend.

D.3. Extreme Sea States

Table 24: Estimates of extreme significant wave height values using the generalized
extreme value distribution (see Figure 57).

Return Significant
period wave
[years] height [m)]
10 6.23
25 6.79
50 7.19
100 7.55
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Table 25: Estimates of extreme significant wave height values using the peak over
thresholds method (see Figure 58).

Return Significant
period wave
[years] height [m)]
10 7.34
25 7.81
50 8.14
100 8.46
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D.4. Wind Data

The wind data for this site (obtained from CFSR), is taken at 36.25 N, 75.5 W located
approximately 23 km northeast of the USACE FRF site (Figure 35), which is the nearest
data point to the site. The average monthly values, along with the 5 and 95" percentiles,
of wind are shown in Figure 140. The values are also tabulated in Table 26. The annual and
seasonal wind roses are shown in Figure 141.
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Figure 140: Monthly wind velocity and direction obtained from CSFR data during
the period 1/1/1979 to 12/31/2014 at 36.25 N, 75.5 W.
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Figure 141: (a) Annual and (b) seasonal wind roses of velocity and direction obtained
from CSFR data during the period 1/1/1979 to 12/31/14 at 36.25 N, 75.5 W.
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Table 26: Monthly wind velocity and direction obtained from CSFR data during the
period 1/1/1979 to 12/31/2014 at 36.25 N, 75.5 W, located approximately 23 km
northeast of USACE FRF.

U[m/s] Direction[°]
5% | Mean | 95% Mean
March 2.6 8.3 14.6 315
April 2.4 7.7 13.5 269
May 2.1 6.7 11.9 215
June 1.9 6.1 10.5 202
July 1.7 5.9 10.4 209
August 1.7 5.8 10.3 178
September | 2.0 6.6 124 54
October 2.2 7.3 13.1 350
November | 2.3 8.1 14.5 319
December | 2.7 8.8 15.4 310
January 2.9 9.1 15.5 308
February 2.6 8.6 15.2 318
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D.5. Ocean Surface Current Data

The surface current data (obtained from OSCAR), is located at 36.5 N, 75.5 W, the closest
data point to shore. The average monthly values, along with the 5* and 95" percentiles, of
current are shown in Figure 142. These data points are listed in Table 27. The annual and
seasonal current roses are shown in Figure 143.
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Figure 142: Monthly current velocity and direction obtained from CSFR data during
the period 1/1/1993 to 12/31/2014 at 36.5 N, 75.5 W.
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Figure 143: (a)Annual and (b) seasonal current roses of velocity and direction obtained
from CSFR data during the period 1/1/1993 to 12/31/14 at 36.5 N, 75.5 W.
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Table 27: Monthly surface current velocity and direction obtained from OSCAR data
during the period 1/1/1993 to 12/30/2014 at 36.5 N, 75.5 W, located approximately
40 km northeast of the USACE FRF site.

U[m/s] Direction[°]

5% | Mean | 95% | 5% | Mean | 95%
March 0.177 | 0.314 | 0.443 | 235 246 253
April 0.143 | 0.321 | 0.469 | 239 244 256
May 0.127 | 0.325 | 0.476 | 238 242 261
June 0.226 | 0.339 | 0.516 | 239 243 259
July 0.231 | 0.385 | 0.629 | 241 241 251
August 0.269 | 0.370 | 0.564 | 243 239 245

September | 0.222 | 0.357 | 0.548 | 239 239 245
October 0.211 | 0.338 | 0.572 | 238 240 249
November | 0.219 | 0.323 | 0.492 | 244 240 239
December | 0.238 | 0.324 | 0.507 | 239 241 245
January 0.208 | 0.333 | 0.524 | 242 243 238
February 0.168 | 0.325 | 0.485 | 241 245 249
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Appendix E: PACIFIC MARINE ENERGY TEST CENTER (PMEC):
LAKE WASHINGTON TEST SITE

E.1. TEC TS Parameter Values

Table 28: The average, 5" and 95" percentiles of the six parameters at Lake Wash-
ington (see Figure 64).

J[EW /m] Hpo[m] Te[s]

5% | Mean | 95% | 5% | Mean | 95% | 5% | Mean | 95%
March 0.0026 | 0.052 | 0.219 | 0.071 | 0.200 | 0.444 | 1.06 1.56 2.26
April 0.0025 | 0.040 | 0.169 | 0.070 | 0.180 | 0.401 | 1.05 1.50 2.16
May 0.0024 | 0.029 | 0.107 | 0.069 | 0.161 | 0.331 | 1.05 1.45 2.01
June 0.0024 | 0.025 | 0.100 | 0.069 | 0.152 | 0.320 | 1.04 1.41 1.98
July 0.0023 | 0.019 | 0.063 | 0.068 | 0.138 | 0.264 | 1.03 1.37 1.84
August 0.0023 | 0.017 | 0.064 | 0.068 | 0.133 | 0.266 | 1.03 1.35 1.84

September | 0.0023 | 0.027 | 0.124 | 0.067 | 0.150 | 0.353 | 1.02 | 1.40 2.05
October 0.0023 | 0.047 | 0.205 | 0.067 | 0.184 | 0.432 | 1.02 | 1.50 2.24
November | 0.0026 | 0.054 | 0.218 | 0.070 | 0.201 | 0.444 | 1.05 | 1.56 2.26
December | 0.0024 | 0.051 | 0.209 | 0.069 | 0.190 | 0.437 | 1.03 | 1.52 2.23
January 0.0024 | 0.063 | 0.279 | 0.069 | 0.207 | 0.491 | 1.04 | 1.57 2.37
February 0.0023 | 0.056 | 0.256 | 0.068 | 0.197 | 0.474 | 1.02 | 1.54 2.32

€0 0;[°] do

5% | Mean | 95% | 5% | Mean | 95% | 5% | Mean | 95%
March 0.226 | 0.241 | 0.252 | 75 188.4 325 | 0.79 0.88 0.95
April 0.226 | 0.241 | 0.254 | 35 191.7 335 | 0.78 0.88 0.95
May 0.227 | 0.242 | 0.255 | 15 206.5 335 | 0.77 0.89 0.95
June 0.225 | 0.242 | 0.255 | 25 206.2 345 | 0.77 0.89 0.95
July 0.223 | 0.243 | 0.256 | 15 260.6 345 | 0.72 0.88 0.96
August 0.226 | 0.242 | 0.255 | 15 243.6 345 | 0.73 0.89 0.96

September | 0.222 | 0.241 | 0.255 | 15 | 2184 | 345 | 0.76 | 0.89 0.96
October 0.223 | 0.241 | 0.254 | 25 | 190.5 | 335 | 0.79 | 0.89 0.95
November | 0.227 | 0.241 | 0.254 | 115 | 188.0 | 335 | 0.83 | 0.89 0.95
December | 0.224 | 0.240 | 0.255 | 75 | 178.8 | 335 | 0.80 | 0.88 0.95
January 0.226 | 0.241 | 0.253 | 25 | 187.8 | 335 | 0.82 | 0.89 0.95
February 0.220 | 0.240 | 0.254 | 25 | 186.3 | 335 | 0.77 | 0.88 0.95
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E.2. Wave Roses

The annual wave rose of omnidirectional wave power, J, and direction of maximum direc-
tionally resolved wave power, 6;, is shown in Figure 144, and essentially mirrors that for
significant wave height, H,,y, and 6; shown in Figure 145.
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Figure 144: Annual wave rose of omnidirectional wave power and direction of maxi-
mally resolved wave power. Values of J greater than 0.5 kW /m are included in the
top bin as shown in the legend.
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Figure 145: Annual wave rose of significant wave height and direction of maximally
resolved wave power. Values of H,,; greater than 1 m are included in the top bin as
shown in the legend.

E.3. Extreme Sea States

Table 29: Estimates of extreme significant wave height values using the generalized
extreme value distribution (see Figure 70).

Return Significant
period wave
[years] height [m)]
10 0.94
25 1.01
50 1.07
100 1.13
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Table 30: Estimates of extreme significant
thresholds method (see Figure 71).

wave height values using the peak over

Return Significant
period wave
[years] height [m)]

10 0.93
25 0.98
50 1.01
100 1.04

E.4. Wind Data

The wind data for this site (obtained from the SR 520 bridge weather station), is located
approximately 5 km south of the site (Figure 60). The average monthly values, along with
the 5" and 95" percentiles, of wind are shown in Figure 146. The values are also tabulated
in Table 31. The annual and seasonal wind roses are shown in Figure 147.
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Figure 146: Monthly wind velocity and direction obtained from the SR 520 bridge
weather station on Lake Washington during the period 1/1/2005 to 12/31/2014.
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Figure 147: (a) Annual and (b) seasonal wind roses of velocity and direction obtained
from the SR 520 bridge weather station during the period 1/1/2005 to 12/31/14.
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Table 31: Monthly wind velocity and direction obtained from the SR 520 bridge
weather station on Lake Washington during the period 1/1/2005 to 12/31/2014.

U[m/s] Direction|°]
5% | Mean | 95% Mean
March 0.81 4.2 9.5 174
April 0.72 3.9 8.5 174
May 0.77 3.6 7.6 177
June 0.80 3.6 7.2 182
July 0.84 3.4 6.5 189
August 0.75 3.2 6.4 185
September | 0.79 3.4 7.4 184
October 0.83 3.7 8.7 175
November | 0.99 4.4 9.7 179
December | 0.86 3.8 9.5 164
January 0.77 4.1 10.1 168
February 0.64 3.8 9.6 167
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E.5. Ocean Surface Current Data

Neither OSCAR data nor measured surface current data was available at this site. Therefore
the surface current data was estimated using the empirical relationship in Madsen (1977),
where surface current speeds are approximately 3% of the wind speed measured at 10 m
elevation. Note this is a rough estimation of current speeds and should be used with caution.
The average monthly values, along with the 5 and 95" percentiles, of current are shown
in Figure 148. These data points are listed in Table 32. The annual and seasonal current
roses are shown in Figure 149, which exactly mirror the wind roses because the direction is
assumed to be the same.
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Figure 148: Monthly current velocity and direction estimated using the SR 520 bridge
wind data on Lake Washington during the period 1/1/2005 to 12/31/2014.
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Figure 149: (a) Annual and (b) seasonal current roses of velocity and direction esti-
mated using the SR 520 bridge wind data during the period 1/1/2005 to 12/31/14.
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Table 32: Monthly surface current velocity and direction estimes using the SR 520
bridge wind data during the period 1/1/2005 to 12/31/14.

U[m/s] Direction|[°]

5% | Mean | 95% | 5% | Mean | 95%
March 0.024 | 0.127 | 0.284 | 17 174 343
April 0.022 | 0.117 | 0.256 | 13 174 343
May 0.023 | 0.109 | 0.229 | 9 177 346
June 0.024 | 0.108 | 0.217 | 10 182 346
July 0.025 | 0.103 | 0.194 | 7 189 349
August 0.023 | 0.097 | 0.191 | 8 185 347

September | 0.024 | 0.103 | 0.223 | 11 184 348
October 0.025 | 0.110 | 0.262 | 10 175 346
November | 0.030 | 0.131 | 0.290 | 18 179 346
December | 0.026 | 0.115 | 0.284 | 9 164 347
January 0.023 | 0.123 | 0.302 | 11 168 345
February 0.019 | 0.114 | 0.287 | 9 167 345
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Appendix F: PACIFIC MARINE ENERGY TEST CENTER (PMEC):
SOUTH ENERGY TEST SITE (SETS)

F.1. IEC TS Parameter Values

Table 33: The average, 5" and 95" percentiles of the six parameters at SETS (see
Figure 78).

J[kW /m)] Hppno[m] Te[s]

5% | Mean | 95% | 5% | Mean | 95% | 5% | Mean | 95%
March 10.4 59.0 165.9 | 1.54 3.05 5.14 | 7.73 | 10.03 | 12.81
April 6.8 40.7 107.9 | 1.22 2.53 4.26 | 7.72 9.83 12.06
May 3.8 17.8 47.0 | 0.92 1.81 3.04 | 7.07 8.83 10.90
June 4.0 13.1 36.8 | 0.92 1.59 2.81 | 6.97 8.87 11.34
July 2.5 9.8 19.7 | 0.76 1.44 2.11 | 6.80 8.48 10.52
August 3.0 9.2 21.3 | 0.85 1.38 2.15 | 6.67 8.50 10.66
September | 4.7 19.7 59.3 | 1.02 1.82 3.24 | 7.44 9.37 11.78
October 8.3 42.2 120.9 | 1.33 2.56 4.53 | 7.94 9.86 12.31
November | 10.7 69.7 185.1 | 1.44 3.27 5.42 | 7.83 | 10.12 | 12.88
December 9.6 78.2 231.0 | 1.33 3.34 5.83 | 8.23 | 10.76 | 13.96
January 12.6 77.1 204.4 | 1.52 3.31 5.51 | 836 | 11.00 | 14.10
February 12.5 59.6 159.4 | 1.53 2.96 5.00 | 8.34 | 10.81 | 13.48

€0 6;[°] dg

5% | Mean | 95% | 5% | Mean | 95% | 5% | Mean | 95%
March 0.23 0.30 0.40 | 242.5 | 274.9 | 297.5 | 0.81 0.91 0.96
April 0.24 0.32 0.47 | 252.5 | 279.0 | 297.5 | 0.76 0.90 0.96
May 0.25 0.35 0.48 | 242.5 | 273.2 | 302.5 | 0.76 0.88 0.95
June 0.27 0.38 0.51 | 237.5 | 269.6 | 302.5 | 0.74 0.85 0.93
July 0.29 0.40 0.53 | 242.5 | 276.5 | 307.5 | 0.70 0.82 0.92
August 0.27 | 0.40 0.53 | 247.5 | 276.6 | 307.5 | 0.72 0.82 0.92

September | 0.24 | 0.35 0.49 | 242.5 | 2789 | 3025 | 0.76 | 0.87 0.94
October 0.22 | 0.29 0.41 | 2475 | 280.1 | 302.5 | 0.82 | 0.90 0.95
November | 0.22 | 0.29 0.36 | 242.5 | 279.5 | 3025 | 0.82 | 0.91 0.96
December | 0.19 | 0.28 0.36 | 237.5 | 276.4 | 302.5 | 0.82 | 0.91 0.96
January 0.20 | 0.29 0.38 | 247.5 | 274.0 | 297.5 | 0.85 | 0.92 0.97
February 0.19 | 0.28 0.38 | 237.5 | 275.3 | 302.5 | 0.82 | 0.92 0.97
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F.2. Wave Roses

The annual wave rose of omnidirectional wave power, J, and direction of maximum direc-
tionally resolved wave power, 6;, is shown in Figure 150, and essentially mirrors that for
significant wave height, H,,y, and 6; shown in Figure 151.
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Figure 150: Annual wave rose of omnidirectional wave power and direction of max-
imally resolved wave power. Values of J greater than 40 kW /m are included in the
top bin as shown in the legend.
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Figure 151: Annual wave rose of significant wave height and direction of maximally
resolved wave power. Values of H,,; greater than 6 m are included in the top bin as
shown in the legend.
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F.3. Extreme Sea States

Table 34: Selected values along the 100-year contour for NDBC46050 (see Figure 84).

Signiﬁc?nt Energy
wave height .
(] period [s]
1 3.80
2 4.58
3 5.32
4 6.00
5 6.64
6 7.25
7 7.83
8 8.39
9 8.95
10 9.50
11 10.07
12 10.65
13 11.27
14 11.94
15 12.71
16 13.66
17 15.14
17.31 16.57
17 18.04
16 19.63
15 20.65
14 21.48
13 22.18
12 22.79
11 23.34
10 23.84
9 24.29
8 24.69
7 25.05
6 25.36
5 25.63
4 25.85
3 26.02
2 26.12
1 26.15
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F.4. Wind Data

The wind data for this site (obtained from CFSR), is taken at 44.5 N, 124.5 W located
approximately 23 km west/southwest of SETS (Figure 76), which is the nearest data point
to the site. The average monthly values, along with the 5* and 95 percentiles, of wind are
shown in Figure 152. The values are also tabulated in Table 35. The annual and seasonal
wind roses are shown in Figure 153.
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Figure 152: Monthly wind velocity and direction obtained from CSFR data during
the period 1/1/1979 to 12/31/2014 at 44.5 N, 124.5 W, located 23 km west /southwest
of SETS (Figure 76).
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Figure 153: (a) Annual and (b) seasonal wind roses of velocity and direction obtained
from CSFR data during the period 1/1/1979 to 12/31/2014.
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Table 35: Monthly wind velocity and direction obtained from CSFR data during the
period 1/1/1979 to 12/31/2014 at 44.5 N, 124.5 W, located approximately 23 km
west /southwest of SETS.

U[m/s] Direction[°]
5% | Mean | 95% Mean
March 2.0 7.2 14.4 220
April 2.0 6.6 12.5 265
May 1.7 6.1 11.2 314
June 1.9 6.2 11.1 331
July 1.5 6.2 11.2 346
August 1.3 5.5 10.3 346
September | 1.3 5.7 10.7 349
October 1.6 6.2 12.6 242
November | 2.2 7.7 15.9 199
December | 2.4 8.2 16.5 186
January 2.5 8.0 15.8 183
February 2.1 7.6 154 188
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F.5. Ocean Surface Current Data

The surface current data (obtained from OSCAR) used for this site is located at 44.5 N,
125.5 W. There is data located closer to the site at 44.5 N, 124.5 W, however the period of
record is short (about 2 years). Data from the two years available was compared at both
locations. Surface current speeds at 124.5 W are slightly higher in the summer than at 125.5
W, however overall the patterns are similar. Therefore, the data point further out (125.5 W)
with the longer period of record (about 20 years) was used for consistency with the other
sites. The average monthly values, along with the 5 and 95" percentiles, of current are
shown in Figure 154. These data points are listed in Table 36. The annual and seasonal
current roses are shown in Figure 155.
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Figure 154: Monthly ocean surface current velocity and direction obtained from OS-
CAR at 44.5 N, 125.5 W. Data period 1/1/1993 to 12/30/2014.
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Figure 155: (a) Annual and (b) seasonal current roses of ocean surface current velocity
and direction obtained from OSCAR at 44.5 N, 125.5 W. Data period 1/1/1993 to
12/30/2014.
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Table 36: Monthly surface current velocity and direction obtained from OSCAR data
during the period 1/1/1993 to 12/30/2014 at 44.5 N, 125.5 W.

U[m/s] Direction|[°]
5% | Mean | 95% | 5% | Mean | 95%
March 0.014 | 0.035 | 0.058 | -95 -23 3
April 0.003 | 0.037 | 0.061 | -88 -7 16
May 0.010 | 0.037 | 0.055 | -110 3 15
June 0.009 | 0.040 | 0.062 | -83 5 15
July 0.015 | 0.052 | 0.072 | -8 20 28
August 0.031 | 0.057 | 0.079 | -7 21 27
September | 0.030 | 0.056 | 0.082 | -27 14 26
October 0.020 | 0.052 | 0.079 | -48 5 27
November | 0.009 | 0.049 | 0.075 | -85 -11 14
December | 0.019 | 0.043 | 0.078 | -107 -27 12
January 0.007 | 0.030 | 0.056 | -104 -39 7
February 0.004 | 0.030 | 0.053 | -108 -18 20
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Appendix G: CALWAVE PROPOSED CENTRAL COAST WEC
TEST SITE AT VANDENBERG AIR FORCE BASE

(VAFB)

G.1. IEC TS Parameter Values

Table 37: The average, 5" and 95" percentiles of the six parameters at the
Vandenberg site (see Figure 92).

South

J[EW,/m) Hyolm] 7.1s)

5% | Mean | 95% | 5% | Mean | 95% | 5% | Mean | 95%
March 9.5 55.0 143.9 | 1.33 2.75 443 | 9.19 | 11.98 | 15.54
April 9.2 38.3 91.3 | 1.39 2.50 3.89 | 7.35 | 10.75 | 14.24
May 6.2 27.3 62.1 | 1.18 2.19 3.35 | 6.13 | 10.17 | 15.63
June 6.9 24.9 54.2 | 1.18 2.21 3.29 | 6.18 9.47 14.87
July 9.3 16.0 32.0 | 1.07 1.82 2.60 | 5.76 9.13 14.79
August 3.4 16.6 33.6 | 0.95 1.81 2.57 | 5.76 9.48 14.92
September | 5.2 20.0 45.8 | 1.08 1.84 2.83 | 5.98 | 10.36 | 14.82
October 7.1 31.0 81.7 | 1.20 2.20 3.63 | 7.96 | 10.88 | 14.72
November | 10.7 46.1 128.1 | 1.42 2.56 4.26 | 8.73 | 11.58 | 14.70
December | 11.9 65.8 166.7 | 1.43 2.94 4.68 | 9.59 | 12.29 | 15.68
January 12.4 67.9 173.1 | 1.56 2.95 4.84 | 9.13 | 12.47 | 15.99
February 154 74.6 202.2 | 1.61 3.09 5.19 | 9.62 | 12.53 | 15.97

€0 6;[°] dy

5% | Mean | 95% | 5% | Mean | 95% | 5% | Mean | 95%
March 0.23 0.24 0.25 | 275.0 | 291.4 | 307.5 | 0.98 0.98 0.99
April 0.23 0.23 0.24 | 207.5 | 290.2 | 312.5 | 0.98 0.98 0.99
May 0.23 0.23 0.24 | 192.5 | 272.6 | 312.5 | 0.98 0.98 0.99
June 0.23 0.23 0.24 | 192.5 | 284.0 | 312.5 | 0.98 0.98 0.99
July 0.23 0.24 0.25 | 192.5 | 279.5 | 317.5 | 0.98 0.98 0.99
August 0.23 0.24 0.24 | 187.5 | 272.6 | 312.5 | 0.98 0.98 0.99

September | 0.23 | 0.24 0.25 | 192.5 | 272.1 | 3125 | 0.97 | 0.98 0.99

October 0.23 | 0.23 0.24 | 202.5 | 289.6 | 3125 | 0.98 | 0.98 0.99

November | 0.23 | 0.24 0.25 | 277.5 | 295.2 | 312.5 | 0.98 | 0.98 0.99

December | 0.23 | 0.24 0.25 | 277.5 | 293.5 | 3125 | 0.98 | 0.98 0.99

January 0.23 | 0.24 0.24 | 272.5 | 288.6 | 307.5 | 0.98 | 0.98 0.99

February 0.23 | 0.24 0.24 | 2725 | 288.2 | 307.5 | 0.98 | 0.98 0.99
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Table 38: The average, 5" and 95" percentiles of the six parameters at the South by
Southeast Vandenberg site (see Figure 93).

J[EW /m]| Hpo[m] T.[s]

5% | Mean | 95% | 5% | Mean | 95% | 5% | Mean | 95%
March 7.9 42.4 105.8 | 1.22 2.44 3.94 | 8.96 | 11.70 | 15.21
April 8.0 30.0 68.3 | 1.26 2.24 3.42 | 7.21 | 10.50 | 13.99
May 4.9 22.6 50.6 | 1.07 2.01 3.03 | 6.11 | 10.02 | 15.51
June 5.9 20.5 429 | 1.10 2.02 2.96 | 6.12 9.31 14.81
July 4.2 13.6 28.1 | 0.99 1.68 2.39 | 5.74 9.01 14.69
August 2.3 13.9 28.4 | 0.81 1.66 2.35 | 5.73 9.32 14.79
September | 3.6 16.3 36.8 | 0.87 | 1.67 2.50 | 5.97 | 10.22 | 14.72
October 9.8 23.6 58.4 | 1.08 1.94 3.07 | 7.74 | 10.64 | 14.56
November 8.2 34.2 91.3 | 1.26 2.23 3.69 | 8.50 | 11.27 | 14.37
December 9.4 49.2 125.8 | 1.30 2.56 4.14 | 9.32 | 11.98 | 15.35
January 10.3 54.8 140.8 | 1.41 2.66 442 | 8.89 | 12.22 | 15.78
February 12.5 59.0 165.2 | 1.45 2.75 4.60 | 9.36 | 12.26 | 15.72

€0 0;[°] do

5% | Mean | 95% | 5% | Mean | 95% | 5% | Mean | 95%
March 0.23 0.25 0.27 | 272.5 | 286.7 | 303.8 | 0.98 0.98 0.99
April 0.23 0.25 0.26 | 202.5 | 286.5 | 305.0 | 0.98 0.98 0.99
May 0.23 | 0.24 0.26 | 192.5 | 270.5 | 310.0 | 0.98 0.98 0.99
June 0.23 0.24 0.25 | 195.0 | 281.4 | 310.0 | 0.98 0.98 0.99
July 0.23 0.24 0.27 | 195.0 | 277.1 | 312.5 | 0.97 0.98 0.99
August 0.23 0.24 0.26 | 190.0 | 271.6 | 310.0 | 0.98 0.98 0.99

September | 0.23 | 0.25 0.27 | 1925 | 269.4 | 310.0 | 0.97 | 0.98 0.99
October 0.23 | 0.25 0.27 | 202.5 | 285.0 | 310.0 | 0.98 | 0.98 0.99
November | 0.24 | 0.25 0.27 | 273.8 | 290.2 | 305.0 | 0.98 | 0.98 0.99
December | 0.24 | 0.25 0.27 | 275.0 | 288.3 | 305.0 | 0.98 | 0.98 0.99
January 0.23 | 0.25 0.27 | 270.0 | 284.1 | 300.0 | 0.98 | 0.98 0.99
February 0.23 | 0.25 0.27 | 270.0 | 283.6 | 300.0 | 0.98 | 0.98 0.99
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G.2. Wave Roses

The annual wave rose of omnidirectional wave power, J, and direction of maximum direc-
tionally resolved wave power, §;, is shown in Figures 156 and 157, and essentially mirrors
that for significant wave height, H,,, and 6; shown in Figures 158 and 159 for the South
and SSE sites.
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Figure 156: Annual wave rose of omnidirectional wave power and direction of maxi-
mally resolved wave power at the South location. Values of J greater than 40 kW /m
are included in the top bin as shown in the legend.
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Figure 157: Annual wave rose of omnidirectional wave power and direction of maxi-
mally resolved wave power at the SSE location. Values of J greater than 40 kW /m
are included in the top bin as shown in the legend.
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Figure 158: Annual wave rose of significant wave height and direction of maximally
resolved wave power at the South location. Values of H,,( greater than 6 m are included
in the top bin as shown in the legend.
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Figure 159: Annual wave rose of significant wave height and direction of maximally
resolved wave power at the SSE location. Values of H,,g greater than 6 m are included
in the top bin as shown in the legend.

G.3. Extreme Sea States

Table 39: Estimates of extreme significant wave height values using the generalized
extreme value distribution (see Figure 104).

Return Significant
period wave
[years] height [m)]
10 8.17
25 8.90
50 9.44
100 9.98

284



Table 40: Estimates of extreme significant wave height values using the peak over
thresholds method (see Figure 105).

Return Significant
period wave
[years] height [m)]
10 8.62
25 9.05
50 9.35
100 9.63
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G.4. Wind Data

The wind data for this site (obtained from CFSR), is taken at 34.5 N, 121 W located
approximately 30 km west of the site (Figure 89), which is the nearest data point to the site.
The average monthly values, along with the 5" and 95" percentiles, of wind are shown in
Figure 160. The values are also tabulated in Table 41. The annual and seasonal wind roses
are shown in Figure 161.
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Figure 160: Monthly wind velocity and direction obtained from CSFR data during
the period 1/1/1979 to 12/31/2014 at 34.5 N, 121 W, located approximately 30 km
west of the test site.
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Figure 161: (a)Annual and (b) seasonal wind roses of velocity and direction obtained
from CSFR data during the period 1/1/1979 to 12/31/14. Data taken at 34.5 N, 121
W, located approximately 30 km west of the test site.
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Table 41: Monthly wind velocity and direction obtained from CSFR data during the
period 1/1/1979 to 12/31/2014 at 34.5 N, 121 W, located approximately 30 km west
of the Vandenberg AFB site.

U[m/s] Direction|°]
5% | Mean | 95% Mean
March 2.05 7.2 12.8 315
April 2.51 8.2 14.0 315
May 2.99 8.8 14.2 313
June 2.82 8.6 13.6 311
July 2.73 7.5 12.0 309
August 3.26 7.6 11.5 310
September | 2.42 7.0 11.7 311
October 1.77 6.5 11.7 315
November | 1.63 6.2 11.5 325
December | 1.52 6.0 11.5 330
January 1.52 5.9 11.5 327
February 1.76 6.5 12.0 318
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G.5. Ocean Surface Current Data

The surface current data (obtained from OSCAR), is located at 34.5 N, 121.5 W, the closest
data point. The average monthly values, along with the 5* and 95" percentiles, of current
are shown in Figure 162. These data points are listed in Table 42. The annual and seasonal
current roses are shown in Figure 163.
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Figure 162: Monthly current velocity and direction obtained from CSFR data during
the period 1/1/1993 to 12/31/2014 at 34.5 N, 121.5 W.
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Figure 163: (a)Annual and (b) seasonal current roses of velocity and direction obtained
from CSFR data during the period 1/1/1993 to 12/31/14. Data taken at 34.5 N, 121.5

W.
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Table 42: Monthly surface current velocity and direction obtained from OSCAR data
during the period 1/1/1993 to 12/31/2014 at 34.5 N, 121.5 W, located approximately
75 km from the site.

U[m/s] Direction|[°]
5% | Mean | 95% | 5% | Mean | 95%
March 0.015 | 0.050 | 0.087 | -78 -29 1
April 0.037 | 0.056 | 0.111 | -64 -25 10
May 0.041 | 0.063 | 0.113 | -59 -12 12
June 0.042 | 0.058 | 0.088 | -43 -6 15
July 0.028 | 0.049 | 0.091 | -60 -4 10
August 0.035 | 0.050 | 0.091 | -55 -3 11
September | 0.031 | 0.051 | 0.106 | -74 -1 22
October 0.013 | 0.043 | 0.082 | -77 16 30
November | 0.017 | 0.040 | 0.079 | -86 4 26
December | 0.005 | 0.034 | 0.073 | -83 -3 25
January 0.022 | 0.033 | 0.051 | -95 ) 28
February 0.002 | 0.038 | 0.092 | -89 -26 28
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Appendix H: HUMBOLDT BAY, CALIFORNIA: POTENTIAL WEC
TEST SITE

H.1. IEC TS Parameter Values

Table 43: The average, 5" and 95" percentiles of the six parameters at Humboldt
(see Figure 112).

J[EW /m] Hpp[m] Te[s]

5% | Mean | 95% | 5% | Mean | 95% | 5% | Mean | 95%
March 8.3 44.5 113.0 | 1.34 2.60 4.16 | 7.66 | 10.07 | 12.91
April 5.6 27.7 72.4 | 1.16 2.16 3.48 | 6.81 9.21 11.61
May 2.9 14.9 40.4 | 0.89 1.74 2.84 | 6.18 7.81 10.21
June 2.6 12.7 32.6 | 0.81 1.70 2.77 | 5.89 7.35 9.19
July 2.3 10.7 24.7 | 0.79 1.64 2.54 | 5.66 6.95 8.36
August 2.3 10.1 24.6 | 0.80 1.57 2.46 | 5.72 7.03 8.83
September | 2.9 14.0 34.9 | 0.83 1.71 2.67 | 6.32 7.95 10.19
October 5.2 30.3 89.6 | 1.10 2.20 3.79 | 6.81 9.28 11.95
November 5.9 47.9 125.2 | 1.11 2.61 4.37 | 7.96 | 10.28 | 13.41
December | 10.1 66.8 181.2 | 1.39 3.02 5.13 | 8.47 | 11.00 | 14.03
January 8.3 58.0 148.9 | 1.31 2.82 4.67 | 8.33 | 10.99 | 13.87
February 10.4 50.1 134.9 | 1.43 2.66 4.45 | 8.15 | 10.93 | 13.63

€0 0;[°] do

5% | Mean | 95% | 5% | Mean | 95% | 5% | Mean | 95%
March 0.24 | 0.31 0.41 | 267.5 | 289.8 | 307.5 | 0.88 0.93 0.97
April 0.26 0.32 0.42 | 270.0 | 293.4 | 312.5 | 0.88 0.93 0.96
May 0.26 0.35 0.47 | 265.0 | 293.9 | 317.5 | 0.85 0.91 0.95
June 0.27 0.35 0.48 | 270.0 | 298.5 | 317.5 | 0.84 0.91 0.95
July 0.27 0.35 0.48 | 272.5 | 303.2 | 317.5 | 0.87 0.92 0.95
August 0.27 | 0.35 0.47 | 282.5 | 303.9 | 317.5 | 0.85 0.91 0.95

September | 0.26 | 0.34 0.46 | 277.5 | 3024 | 317.5 | 0.88 | 0.93 0.95
October 0.24 | 0.31 0.42 | 2725 | 2970 | 3175 | 0.88 | 0.93 0.96
November | 0.23 | 0.29 0.40 | 270.0 | 291.5 | 307.5 | 0.87 | 0.93 0.97
December | 0.22 | 0.29 0.39 | 265.0 | 287.6 | 307.5 | 0.87 | 0.93 0.97
January 0.22 | 0.30 0.41 | 260.6 | 285.7 | 305.0 | 0.87 | 0.94 0.97
February 0.22 | 0.30 0.40 | 265.0 | 286.9 | 305.0 | 0.87 | 0.93 0.97
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H.2. Wave Roses

The annual wave rose of omnidirectional wave power, J, and direction of maximum direc-
tionally resolved wave power, 6;, is shown in Figure 164, and essentially mirrors that for
significant wave height, H,,y, and 6; shown in Figure 165.
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Figure 164: Annual wave rose of omnidirectional wave power and direction of max-
imum directionally resolved wave power. Values of J greater than 40 kW /m are
included in the top bin as shown in the legend.
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Figure 165: Annual wave rose of significant wave height and direction of maximum
directionally resolved wave power. Values of H,,j greater than 6 m are included in the
top bin as shown in the legend.
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H.3. Extreme Sea States

Table 44: Selected values along the 100-year contour for CDIP128 (NDBC 46212) (see
Figure 118).
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wave height
[m]

Energy
period [s]
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10.04
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10 14.43
10.91 17.78

10 20.63
21.70
22.39
22.87
23.19
23.38
23.44
23.35
23.09
22.60
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H.4. Wind Data

The wind data for this site (obtained from CFSR), is the mean of magnitude and direction
taken at 40.5 N, 124.5 W and 41 N, 124.5 W. Note that the central location between these
two points is approximately 25 km southwest of the test site (Figure 110). The average
monthly values, along with the 5 and 95" percentiles, of wind are shown in Figure 166.
The values are also tabulated in Table 45. The annual and seasonal wind roses are shown in
Figure 167. In the summer, the predominant direction of winds and waves correlate well. In
the winter, the waves are dominated by distant swells, and the local winds have little effect.
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Figure 166: Monthly wind velocity and direction obtained from CSFR data during
the period 1/1/1979 to 12/31/2014 at 40.75 N, 124.5 W, located approximately 25 km
southwest of the test site (Figure 110).
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Figure 167: (a)Annual and (b) seasonal wind roses of velocity and direction obtained
from CSFR data during the period 1/1/1979 to 12/31/14. Data taken at 40.75 N,
124.5 W, located approximately 25 km southwest of the test site.
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Table 45: Monthly wind velocity and direction obtained from CSFR data during the
period 1/1/1979 to 12/31/2014 at 40.75 N, 124.5 W, located approximately 25 km
southwest of the Humboldt site.

U[m/s] Direction[°]
5% | Mean | 95% Mean
March 1.8 7.3 14.1 301
April 1.8 6.9 13.3 332
May 2.0 7.7 13.9 340
June 2.2 8.4 14.4 343
July 2.2 8.4 13.7 345
August 1.8 7.6 12.8 345
September | 1.6 6.8 12.8 346
October 1.4 6.5 12.7 346
November | 1.4 6.5 13.5 299
December | 1.4 7.2 15.1 192
January 1.5 6.8 14.3 181
February 1.6 7.1 14.4 195
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H.5. Ocean Surface Current Data

The current data (obtained from OSCAR), is located at 40.5 N, 125.5 W, the closest data
point. The average monthly values, along with the 5 and 95" percentiles, of current are
shown in Figure 168. These data points are listed in Table 46. The annual and seasonal
current roses are shown in Figure 169.
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Figure 168: Monthly ocean surface current velocity and direction obtained from OS-
CAR at 40.5 N, 125.5 W, located approximately 110 km southwest of the Humboldt
Site. Data period 1/1/1993 to 12/30/2014.
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Figure 169: (a)Annual and (b) seasonal current roses of ocean surface current velocity
and direction obtained from OSCAR at 40.5 N, 125.5 W, located approximately 110 km
southwest of the Humboldt Site. Data period 1/1/1993 to 12/30/2014.
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Table 46: Monthly surface current velocity and direction obtained from OSCAR data
during the period 1/1/1993 to 12/30/2014 at 40.5 N, 125.5 W, located approximately
110 km from Humboldt test site.

U[m/s] Direction[°]
5% | Mean | 95% | 5% | Mean | 95%
March 0.010 | 0.037 | 0.061 | -78 -3 35
April 0.017 | 0.042 | 0.067 | -72 1 27
May 0.019 | 0.049 | 0.080 | -51 7 28
June 0.024 | 0.059 | 0.083 | -46 8 26
July 0.044 | 0.068 | 0.090 | -36 6 27
August 0.044 | 0.065 | 0.086 | -46 -1 20
September | 0.040 | 0.068 | 0.105 | -47 1 24
October 0.026 | 0.068 | 0.114 | -62 -3 19
November | 0.017 | 0.061 | 0.101 | -78 -11 18
December | 0.014 | 0.051 | 0.093 | -82 -20 25
January 0.016 | 0.042 | 0.090 | -90 -26 31
February 0.014 | 0.038 | 0.078 | -84 -7 40
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