PROBABILISTIC FORECASTING FOR POWER SYSTEM OPERATIONS

Lang Tong
School of Electrical and Computer Engineering
Cornell University, Ithaca, NY

Support in part by DoE (CERTS) and NSF
Joint work with Yuting Ji, Weisi Deng, and Bob Thomas

June 10, 2016
Overview

- **Objectives**
 - Develop *scalable probabilistic forecasting and system simulation* tools for real-time market operations.

- **Applications**
 - Provide market participants locational price distributions for integrating flexible demand and distributed energy resources
 - Provide operator short-term forecast of LMP distribution, power flow distribution, and probability distributions of discrete events such as congestions and contingencies.
 - *Multi-area interchange scheduling under uncertainty*
Outline

- A scalable forecasting and system simulation tool
 - Real-time operation models
 - Geometry of parametric DC OPF
 - Online learning via dynamic critical region generation
 - Complexity and performance: numerical results

- Multi-area interchange scheduling under uncertainty
 - Multi-area and multi-interface models
 - Stochastic interchange scheduling
 - Numerical results

- Conclusions and future work
Load vs. LMP forecasting

- Load are physical processes
- a variety of techniques on both point and probabilistic forecasting
- accuracy typically at 1–3% mean absolute percentage error (MAPE)

- LMPs are solutions of OPF
- Many black-box techniques on (point) LMP forecasting.
- Limited accuracy (10–20% in MAPE)
A real time LMP model

\[
\min_g \quad C(g) \\
\text{subject to} \quad 1^T(g - d_t) = 0 \quad (\lambda_{t-1}) \quad \text{power balance} \\
S(g - d_t) \leq F \quad (\mu_{t-1}) \quad \text{transmission limit} \\
g \leq G \\
g \leq \hat{g}_{t-1} + \Delta.
\]

\[
\pi_t = \lambda_{t-1} 1 + S^T \mu_{t-1}.
\]
Real time LMP model with reserve co-optimization

\[
\begin{align*}
\min_{g,r,s} & \quad \sum_i \left(c^g_i g_i + \sum_j c^r_i r_{i,j} \right) + \sum_u c^p_u s^l_u + \sum_v c^p_v s^s_v \\
\text{subject to} & \quad \sum_i (g_i - d_i) = 0, \\
& \quad \sum_i S_{ik}(g_i - d_i) \leq F_k, \\
& \quad \sum_i \sum_j d^u_{i,j} r_{i,j} + \left(I^+_u - I_u \right) + s^l_u \geq Q^l_u, \\
& \quad I_u = \sum_i \sum_j \sum_{k \in I_u} A_{ik}(g_i - d_i), \\
& \quad \sum_i \sum_j d^v_{i,j} r_{i,j} + s^s_v \geq Q^s_v, \\
& \quad g_i + \sum_j r_{i,j} \leq g^+_i, \\
& \quad \hat{g}_i - \Delta^-_i \leq g_i \leq \hat{g}_i + \Delta^+_i, \\
& \quad 0 \leq r_{i,j} \leq r^+_i, \\
& \quad g_i \geq g^-_i, \\
& \quad s^l_u, s^s_v \geq 0.
\end{align*}
\]

energy balance, transmission constraint \(k \), locational reserve \(u \), interface flow, system reserve \(v \), generator capacity \(i \), generation ramp \(i \), reserve ramp \(i, j \), generation capacity \(i \),
Seams in multi-area operations

\[
\begin{align*}
\min_{q, g_1, g_2} & \quad C_1(g_1) + C_2(g_2) \\
\text{subject to} & \quad 1^T(d_1 - g_1) + q = 0 \quad (\lambda_1) \\
& \quad 1^T(d_2 - g_2) - q = 0 \quad (\lambda_2) \\
& \quad S_1(d_1 - g_1) + T_1 q \leq F_1 \quad (\mu_1) \\
& \quad S_2(d_2 - g_2) + T_2 q \leq F_2 \quad (\mu_2) \\
& \quad g_1 \in \mathcal{G}_1, g_2 \in \mathcal{G}_2.
\end{align*}
\]
Simulation of large stochastic power networks

Characteristics:
- Random generation and load
- Probabilistic contingencies
- Multiperiod security constrained economic dispatch (SCED) with ramp constraints

Features:
- Joint and marginal distributions of nodal prices
- Joint and marginal distributions of power flows
- Joint and marginal distribution of generation dispatch and reserve
-
Probabilistic forecasting and simulation

- **Generic Monte Carlo**
 - Generate sample paths of random generation, demand, contingency scenarios
 - Simulate real-time dispatch (OPF)
 - Complexity: \(\#\text{OPF}=MT \)

- **Online Learning via Dynamic Critical Region Generation**
 - Exploit structures of OPF solution
 - Online learning of solution dictionary
 - Complexity: \(\#\text{OPF}=10^{\{-x\}}MT \)
\[
\min_x \quad z(x) \\
\text{subject to} \quad Ax \leq b + E\theta \\
\]

\[y\]
DCRG: Dynamic Critical Region Generation

Algorithm 1 Dynamic Critical Region Generation
1: Input: load distribution and the mean trajectory \(d_t, t = 1, \cdots, T \).
2: Initialization: compute the initial critical region dictionary \(C_0 \) from \(d_t \).
3: for \(m = 1, \cdots, M \) do
4: Generate a sample path \(\{d^1_t, d^2_t, \cdots, d^M_t\} \) from load distribution.
5: for \(t = 1, \cdots, T \) do
6: Search \(C_{t-1}^m \) for critical region \(C(d^m_t) \).
7: if \(C(d^m_t) \not\in C_{t-1}^m \) then
8: Compute the critical region \(C(d^m_t) \) and update \(C_t^m = C_{t-1}^m \cup \{C(d^m_t)\} \).
9: end if
10: end for
11: end for
12: Output: The critical region dictionary \(C_T^M \).
The Polish Network

- 3120 buses, 3693 branches
- 505 thermal units with ramp constraints
- 30 wind farms (Gaussian)
- 10 constrained transmission lines
- 10,000 Monte Carlo runs
- 24 hour simulation horizon

- 505 decision variables
- 2041 constraints
- ~3M OPFs
Computation cost comparison
Critical region distribution

3000 critical region observed in 3M samples

There are $\sim 2^{HT}$ typical sequences

$$H = - \sum_i (p_i \times \log_2 p_i)$$
The IEEE 118 system

- 118 buses in three areas
- 10 capacity constraints
- 91 stochastic loads (Gaussian)
- 54 thermal generators
- 1000 Monte Carlo runs
Outline

- A scalable forecasting and system simulation tool
 - Real-time operation models
 - Geometry of parametric DC OPF
 - Online learning via dynamic critical region generation
 - Complexity and performance: numerical results

- Multi-area interchange scheduling under uncertainty
 - Multi-area and multi-interface models
 - Stochastic interchange scheduling
 - Numerical results

- Conclusions and future work
Two-area single-interface proxy model
Two-area single-interface interchange

- Each ISO has a simplified model of the neighboring area with a proxy bus.
- Market participants submit offers/bids for external transactions at proxy buses.
- Export/import quantity is scheduled ahead of time.
- Each ISO schedules its own operations with fixed interchange.

- FERC approves coordinated transaction scheduling (CTS) for PJM & NYISO, March 2014.
- Estimated cost saving: 9M~26M per year.
- Versions of CTS are being implemented for MISO-PJM, NYISO-ISONE.
Tie optimization (TO)

\[
\begin{align*}
\min_{q, g_1, g_2} & \quad C_1(g_1) + C_2(g_2) \\
\text{subject to} & \quad \text{power balance constraints for Area 1 and 2} \\
& \quad \text{transmission constraints for Area 1 and 2} \\
& \quad \text{generator constraints for Area 1 and 2} \\
& \quad \text{interface capacity constraint}
\end{align*}
\]
Coordinated Transmission Scheduling (CTS)

\[
\min_{g_1, g_2, q} \quad C_1(g_1) + C_2(g_2) + C_{\text{bid}}(q)
\]

subject to
- power balance constraints for Area 1 and 2
- transmission constraints for Area 1 and 2
- generator constraints for Area 1 and 2
- interface capacity constraint
Stochastic Coordinated Transmission Scheduling (SCTS)

\((P_1)\) \(\min_{q \leq Q} \sum_{i=1}^{2} E_{d_i} [C_i(g_i^*(q, d_i))]

\((P_{2i})\) \(\min_{g_i \in S_i} C_i(g_i)

subject to \(1^T(d_i - g_i) \pm q = 0, \quad (\lambda_i)
\)
\(S_i(d_i - g_i) \pm T_i q \leq F_i. \quad (\mu_i)
\)
\(\pi_i(q, d_i) \triangleq \lambda_i(q, d_i) + (T_i)^T \mu_i(q, d_i)\)

Theorem 1

The optimal interchange is given by the solution \(q^*\) of

\[\pi_1(q) = \pi_2(q) \]

if \(q^* < Q\) and \(Q\) otherwise.
The multi-interface interchange problem

Two-stage stochastic optimization:

$$\begin{align*}
(P_3) \min_{q \leq Q} & \sum_{i=1}^{N} E_i \left[C_i(g_i(q_i, d_i)) \right] \\
(P_{4i}) \min_{g_i \in G_i} & C_i(g_i) \\
\text{subject to} & \quad 1^T(d_i - g_i) + 1^T q_i = 0, \quad (\lambda_i) \\
& \quad S_i(d_i - g_i) + T_i q_i \leq F_i. \quad (\mu_i)
\end{align*}$$

Interface-by-Interface Scheduling (IBIS):

1. Initialize $q^{(0)} = 0$.
2. For iteration k, solve each interface flow sequentially with fixed flows on the other interfaces.
3. If $\|q^{(k-1)} - q^{(k)}\|_2 \leq \epsilon$, terminate; otherwise, go to Step (2) for iteration $k + 1$.

Theorem 2

Interface-by-Interface Scheduling (IBIS) Algorithm generates a sequence $\{q^{(k)}\}_{k=0}^{\infty}$ that converges to the global optimal solution.
- 3 areas, 2 interfaces, and 12 wind generators
- Case 1: renewable penetration level 22%
- Case 2: renewable penetration level 33%
*Renewable penetration = $\frac{E[\text{wind}]}{\text{total load}}$
Scenario 1: 20% renewables

- Diagram showing interface flows and expected overall costs.
- Area 1: \(\pi_1^{CE} = 37.73 \) vs. \(\pi_1^{IBIS} = 36.57 \)
- Area 2: \(\pi_2^{CE} = 38.25 \) vs. \(\pi_2^{IBIS} = 36.57 \)
- Area 3: \(\pi_3^{CE} = 33.26 \) vs. \(\pi_3^{IBIS} = 36.57 \)
Scenario 2: 30% renewables
Summary of results

- Real-time LMP models
 - Energy and energy-reserve markets
 - Deterministic and probabilistic contingencies

- Forecasting methodologies
 - Multiparametric programming approach to
 - Deterministic and probabilistic contingencies
 - Forecast methods and applications
 - An online learning approach of to forecasting of LMP and power flow distributions.
 - A Markov chain approach for ex ante and ex post LMPs
 - Multi-area interchange scheduling under uncertainties
Related publications
