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The GREET (Greenhouse gases, Regulated Emissions, and Energy use in 
Transportation) Model

GREET 1 model:
Fuel-cycle (or well-to-wheels, WTW) 

modeling of vehicle/fuel systems

Stochastic 
Simulation 

Tool

Algae Process 
Description 

(APD)

Carbon Calculator for 
Land Use Change from 

Biofuels (CCLUB)

GREET 2 model: 
Vehicle-cycle modeling for light-duty vehicles



GREET development has been supported by several DOE 

Offices since 1995

- Vehicle Technology Office (VTO) - Bioenergy Technology Office (BETO)
- Fuel-Cell Technology Office (FCTO) - Geothermal Technology Office (GTO) 
- Energy Policy and Systems Analysis (EPSA)

Examples of major uses of GREET
 DOE, USDA, and the Navy use GREET for R&D decisions
 US EPA used GREET for RFS and vehicle GHG standard developments
 CARB developed CA-GREET for its Low-Carbon Fuel Standard compliance
 DOD DLA-Energy uses GREET for alternative fuel purchase requirements
 Energy industry (especially new fuel companies) uses it for addressing sustainability of 

R&D investments
 Auto industry uses it for R&D screening of vehicle/fuel system combinations
 Universities uses GREET for education on technology sustainability of various fuels

GREET has been in public domain and free of charge since it inception in 
1995- Updated and expanded annually
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 Geographically, 71% in North America, 14% in 
Europe, 9% in Asia

 57% in academia and research, 33 % in industries, 
8% in governments

There are more than 23,000 registered GREET users globally



 Energy use
 Total energy: fossil energy and renewable energy

• Fossil energy: petroleum, natural gas, and coal (they are estimated separately)
• Renewable energy: biomass, nuclear energy, hydro-power, wind power, and 

solar energy

 Greenhouse gases (GHGs)
 CO2, CH4, N2O, and black carbon
 CO2e of the three (with their global warming potentials)

 Air pollutants
 VOC, CO, NOx, PM10, PM2.5, and SOx

 They are estimated separately for 
• Total (emissions everywhere)
• Urban (a subset of the total)

 Water consumption

 GREET LCA functional units
 Per service unit (e.g., mile driven)
 Per unit of output (e.g., million Btu, MJ, gasoline gallon equivalent)
 Per units of resource (e.g., per ton of biomass)

GREET outputs include energy use, greenhouse gases, criteria 

pollutants and water consumption for vehicle and energy systems



GREET includes more than 100 fuel production 

pathways from various energy feedstock sources
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GREET is designed with stochastic simulation 

capabilities to address variabilities and uncertainties

Distribution-Based Inputs Generate Distribution-Based Outputs
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GREET Modeling Approach

 Build LCA modeling capacity with the GREET model

Build a consistent LCA platform with reliable, widely accepted 
methods/protocols

Address emerging LCA issues

Access to primary data sources and conduct detailed analysis

Document sources of data, modeling and analysis approach, and 
results/conclusions

Maintain openness and transparency of LCAs by making GREET 
and its documentation publicly available

Primarily process-based LCA approach (the so-called attributional 
LCA); some features of consequential LCA are incorporated
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GREET data sources

 Baseline technologies and systems 
- EIA data and AEO projections
- EPA eGrid for electric systems
- USGS for water data

 Field operation data:
- Oil sands and shale oil operations
- Ethanol plants energy use
- Farming data from USDA

 Collaboration with other national laboratories (e.g., TEAs by H2A models)

 Simulations with models:
- ANL Autonomie for fuel economy
- EPA MOVES for vehicle emissions, EPA AMPD for stationary emissions
- LP models for refinery operation
- Dispatch models for electricity marginal analysis

 Industry input: 
- Fuel producers and technology developers on fuels
- Automakers and system components producers on vehicles
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Main LCA issues and limitations

 LCA system boundary – scope of LCA
 Process-based LCA 
 Attributional vs. consequential LCA

Average vs. marginal analysis

 Co-product methods in LCA

 Data availability and representation
 Temporal variation
 Geographic/spatial variation

 Data uncertainty (e.g., methane emissions, LUC)

 Limitations: LCA does not inform about 
 Current vs. future technologies 
 Different TRL across processes and pathways
 Resource and infrastructure availability
 Economics, production scalability, and market acceptance/ 

competitiveness



LCA system boundary: petroleum to gasoline



GHG Emissions of 27 Major Oil Sands Projects

http://pubs.acs.org/doi/abs/10.1021/acs.est.5b01255

Surface mining
bitumen

Upgraded 
surface mining

bitumen

In-situ
bitumen

Upgraded 
in-situ

bitumen

Oil sand operations are 3 to 6 times 
more carbon intensive than average US 

conventional crudes

http://pubs.acs.org/doi/abs/10.1021/acs.est.5b01255


Refinery Analysis -Data are key for proper LCA

-Process fuels
-Utilities

-Other feed/blends



Developed refinery products CO2 intensity with data from 43 
large U.S. refineries (~70% U.S. refining capacity)

 Elgowainy et al. Environmental Science and Technology, 2014
 Forman et al. Environmental Science and Technology, 2014
 Han et al. Fuel, 2015



WTW GHG emissions of petroleum fuels is dominated by end 

use release of CO2; refinery emissions is a distant second
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Hydrogen production today is mainly from SMR, but other 

low-carbon pathways exist

STEAM 
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SHIFT 
REACTOR

Pressure Swing 
Adsorption

Ambient Air

Steam

Stack Gas (CO2 concentrated)

Fuel Gas

Natural Gas H2

At 72% NG to H2 energy efficiency (LHV-basis)
 11 kgCO2e/kgH2



Energy use and GHG emissions are issues for 

liquefaction

Region GHG Emissions
(gCO2e/kWhe)

GHG Emissions
(kgCO2e/kgH2)*

Liquefaction 
Capacity (ton/day)

California 380 4.5 30

Louisiana 610 7.4 70

Indiana 1070 13 30

New York 0 40

Alabama 580 7.0 30

Ontario 130 1.6 30

Quebec 20 0.20 27

Weighted Average 5.0

If US mix 670 8.0

*Assuming liquefaction energy of 12 kWhe/kg_H2

SMR-H2  11 kgCO2e/kgH2



GHG emissions of LH2 truck delivery is smaller than 

tube-trailer delivery due to higher payload

4000 kgH2

250 bar, 550 kgH2

60 mi to city gate

60 mi to city gate

0.1 kgCO2e/kgH2

0.7 kgCO2e/kgH2

300 mi to city gate0.5 kgCO2e/kgH2

300 mi to city gate3.5 kgCO2e/kgH2



Fuel cycle GHG emissions of current LH2 is 

comparable to compressed GH2 pathways in the US  

with long T&D distances

Pathway
Production Transport Compression

/liquefaction
Total

GH2 (700 bar) 11 0.7-3.5 3.0 15 – 18

LH2 (CcH2) 11 0.1-0.5
5.2 
or

8.2‡

16 – 17 
or

19 – 20‡

kgCO2e/kgH2

‡ Assuming US mix for H2 liquefaction



GHG emissions reduction potential of H2 FCVs depends on H2

production and packaging for delivery and refueling

Assuming 26 mpg for gasoline ICEV and 55 mpgge for H2 FCEV



Low/high band: sensitivity to uncertainties associated with projected fuel economy values and selected fuel pathway parameters

WTW GHG Emissions in g CO2e/mile: 2035 Mid-Size Car

(DOE EERE April 25 2013, Record 13005)
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Please visit

http://greet.es.anl.gov for:

• GREET models

• GREET documents 

• LCA publications

• GREET-based tools and calculators  

http://greet.es.anl.gov/
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