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The GREET (Greenhouse gases, Regulated Emissions, and Energy use in
Transportation) Model
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GREET 2 model:
Vehicle-cycle modeling for light-duty vehicles
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GREET development has been supporied by several DOE
Offices since 1995

- Vehicle Technology Office (VTO) - Bioenergy Technology Office (BETO)
- Fuel-Cell Technology Office (FCTQO) - Geothermal Technology Office (GTO)
- Energy Policy and Systems Analysis (EPSA)

GREET has been in public domain and free of charge since it inception in
1995- Updated and expanded annually

Examples of major uses of GREET

= DOE, USDA, and the Navy use GREET for R&D decisions

» US EPA used GREET for RFS and vehicle GHG standard developments

» CARB developed CA-GREET for its Low-Carbon Fuel Standard compliance
= DOD DLA-Energy uses GREET for alternative fuel purchase requirements

= Energy industry (especially new fuel companies) uses it for addressing sustainability of
R&D investments

= Auto industry uses it for R&D screening of vehicle/fuel system combinations
= Universities uses GREET for education on technology sustainability of various fuels



There are more than 23,000 registered GREET users globally
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= Geographically, 71% in North America, 14% in
Europe, 9% in Asia

= 57% in academia and research, 33 % in industries,
8% in governments Chevron
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GREET outputs include energy use, greenhouse gases, criteria
pollutants and water consumption for vehicle and energy systems

J Energy use
» Total energy: fossil energy and renewable energy
e Fossil energy: petroleum, natural gas, and coal (they are estimated separately)
e Renewable energy: biomass, nuclear energy, hydro-power, wind power, and
solar energy

—> O Greenhouse gases (GHGs)
» CO, CH, N,0, and black carbon
» CO,, of the three (with their global warming potentials)

 Air pollutants
> VOC, CO, NO, PM,, PM, s and SO,
» They are estimated separately for
e Total (emissions everywhere)
e Urban (a subset of the total)

(J Water consumption

(J GREET LCA functional units
» Per service unit (e.g., mile driven)
» Per unit of output (e.g., million Btu, MJ, gasoline gallon equivalent)
» Per units of resource (e.g., per ton of biomass)



GREET includes more than 100 fuel production
pathways from various energy feedstock sources
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GREET is designed with stochastic simulation
capabilities to address variabilities and uncertainties

Distribution-Based Inputs Generate Distribution-Based Outputs

Assumption Name: |NG to GH2 Production Efficiency
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GREET Modeling Approach

O Build LCA modeling capacity with the GREET model

» Build a consistent LCA platform with reliable, widely accepted
methods/protocols

» Address emerging LCA issues

» Access to primary data sources and conduct detailed analysis

» Document sources of data, modeling and analysis approach, and
results/conclusions

» Maintain openness and transparency of LCAs by making GREET
and its documentation publicly available

» Primarily process-based LCA approach (the so-called attributional
LCA); some features of consequential LCA are incorporated



GREET data sources

» Baseline technologies and systems
- EIA data and AEO projections
- EPA eGrid for electric systems
- USGS for water data

> Field operation data:
- Oil sands and shale oil operations
- Ethanol plants energy use
- Farming data from USDA
> Collaboration with other national laboratories (e.g., TEAs by H2A models)

» Simulations with models:
ANL Autonomie for fuel economy
EPA MOVES for vehicle emissions, EPA AMPD for stationary emissions
LP models for refinery operation
Dispatch models for electricity marginal analysis
» Industry input:
- Fuel producers and technology developers on fuels
- Automakers and system components producers on vehicles



Main LCA issues and limitations

. LCA system boundary — scope of LCA
" Process-based LCA
= Attributional vs. consequential LCA
» Average vs. marginal analysis

J Co-product methods in LCA

. Data availability and representation

= Temporal variation

= Geographic/spatial variation

= Data uncertainty (e.g., methane emissions, LUC)

J Limitations: LCA does not inform about
=  Current vs. future technologies
= Different TRL across processes and pathways
= Resource and infrastructure availability
= Economics, production scalability, and market acceptance/
competitiveness



LCA system boundary: petroleum to gasoline
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GHG Emissions of 27 Major Oil Sands Projects
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Oil sand operations are 3 to 6 times
more carbon intensive than average US
conventional crudes
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http://pubs.acs.org/doi/abs/10.1021/acs.est.5b01255



http://pubs.acs.org/doi/abs/10.1021/acs.est.5b01255

Refinery Analysis -Data are key for proper LCA
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5
Developed refinery products CO, intensity with data from 43

large U.S. refineries (*70% U.S. refining capacity)
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5.
WTW GHG emissions of petroleum fuels is dominated by end

use release of CO,; refinery emissions is a distant second
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Production and delivery pathways of gaseous H,
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Production and delivery pathways for liquid H,
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Hydrogen production today is mainly from SMR, but other

low-carbon pathways exist

Stack Gas (CO, concentrated)
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California

Louisiana
Indiana
New York
Alabama
Ontario
Quebec
Weighted Average
If US mix

N
Energy use and GHG emissions are issues for

liquefaction

GHG Emissions | GHG Emissions | Liquefaction
(gCOZe/kWhe) (kgcoze/kgHz)* capaCity (ton/day)

380
610
1070

580

130

20

670

4.5 30
7.4 70
13 30
0 40
7.0 30
1.6 30
0.20 27
5.0
8.0

*Assuming liquefaction energy of 12 kWhe/kg_H,



GHG emissions of LH, truck delivery is smaller than
tube-trailer delivery due to higher payload

4000 kg,

0.1 kgCO2e/kgH2 60 mi to city gate
05 kgCOZG/kgHZ 300 mi to city gate

250 bar, 550 kg,

0.7 kgCOze/kgHZ 60 mi to city gate

35 kgCO2e/kgH2 300 mi to city gate



\
Fuel cycle GHG emissions of current LH, is

comparable to compressed GH, pathways in the US
with long T&D distances

kgCOZe/kgHz
Production [Transport| Compression Total
Pathway [liquefaction
GH2 (700 bar) 11 0.7-3.5 .0 15-18
5.2 16-17
LH2 (CcH2) 11 0.1-0.5 or or
8.2% 19 - 20+

¥ Assuming US mix for H2 liquefaction



£
GHG emissions reduction potential of H, FCVs depends on H,
production and packaging for delivery and refueling
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(Central SMR) (Distrb. SMR) (Central SMR) (Central SMR, (Central (Central Wind)
with CCS) Biomass)

Assuming 26 mpg for gasoline ICEV and 55 mpgge for H, FCEV



N
WTW GHG Emissions in g CO,./mile: 2035 Mid-Size Car

Low, Medium & High GHGs/mile for 2035 Technology, Except Where Indicated
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Low/high band: sensitivity to uncertainties associated with projected fuel economy values and selected fuel pathway parameters
(DOE EERE April 25 2013, Record 13005)



Please visit
http://greet.es.anl.gov for:

* GREET models
* GREET documents
* LCA publications
« GREET-based tools and calculators


http://greet.es.anl.gov/
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