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The Light Bulb of the Future… 

Applications: 

- Communications hub 
- Presence sensor 

Constrain: Cost Solution: Integration 

- Alarm 
- Wireless power transmitter 
- Smart thermostat 
- Environmental sensor 

- Lighting 
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Can we first integrate the 
power supply? 

~ 10-100x 
reduction in size 
with full 
integration 

~ 3x reduction in 
energy loss 
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ARPA-E ADEPT Program 
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‣ Target: Miniaturization (>10x reduction in size) 

–  Radical improvements in the size of power grid-scale voltage (>100 
V) power electronics at moderate power levels (e.g., 10-100 W) 

‣  Focus: Greatly increased frequencies (10-100x) 
–  GaN-on-Si power devices (Design and reliability) 
–  Integrated magnetics (µ-fabrication of cores and windings, new 

nanostructured magnetic materials for high frequency operation) 
–  Circuit architectures (for high f, density, lifetime) 

‣ Additional advantage: 
–  Increase reliability in electrolytic-free circuit 

Devices 

Magnetics 

Circuits 
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System Demo 
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‣ New circuit architecture for HF grid-interface conversion 
–  Facilitates high frequency and miniaturized magnetics 
–  High power factor without (unreliable) electrolytics 

‣ Key targets achieved (>10x frequency, > 10x power density) 
Commercial PowerChip 

Efficiency 64 - 83 % 93 % 

Switching 
Frequency 

57 - 104 kHz 5-10 MHz 

Power Factor 0.73-0.93 0.89 

Power Density < 5 W/in3 >50 W/in3 

(to 130 W/in3) 

120 Vac in, 35 V dc out 

Circuit design by Prof. 
Perreault @ MIT 
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ARPA-E ADEPT Future Integrated Power Module 
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Nano-Structured 
Magnetic Materials 

3D Microfabricated  
Passive Components 

Integrated GaN on 
Si Devices 

High Efficiency 
Controls 

Very High Frequency Resonant Power Converter 
Topologies  
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GaN LED and GaN Power Transistors  
 

= 2 or 1 chips? 
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~30% of chip cost is due to packaging 

MIT-Singapore SMART LEES Program  
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Increasing the level of integration even further… 

GaN LEDs  
 

GaN control and power 
electronics 
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GaN Vertical LED-HEMT Integration  

►  LED is on top of HEMT: 
 

•  p-GaN on top is easier to activate 
•  The LED’s doping (if grown first) would make HEMT pinch-off 

difficult  

MIT-Singapore SMART LEES Program  
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Process Flow for GaN LED-HEMT 
Integration 1	

Start from: GaN HEMT on Si wafer (from AIXTRON) 

LED growth window formation 
PECVD SiO2 on the whole wafer 
Lithography patterning 
SiO2 etch and window opening 

LED layers epi-growth  
(By Li Zhang, Prof. Chua in NUS) 

AlGaN (HEMT) 

UID-GaN (HEMT) 

Si(111) Substrate 

SiO2 

p-GaN (LED) 

n-GaN (LED) 
Poly-GaN 

InGaN/GaN MQWs 
(LED) 

AlGaN (HEMT) 

UID-GaN (HEMT) 

Si(111) Substrate 

SiO2 

AlGaN (HEMT) 

UID-GaN (HEMT) 

Si(111) Substrate 
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Process Flow for GaN LED-HEMT 
Integration 2	

p-electrode mesa etch  

Plasma dry etch of p-GaN, QW and 
part of n-GaN layers 

Lithography 

poly GaN/SiO2 removal and  
LED mesa formation  

HEMT mesa isolation 
Lithography: HEMT mesa patterning 
Plasma dry etch of HEMT barrier and  
part of channel layers  

p-GaN (LED) 

n-GaN (LED) 

AlGaN (HEMT) 

UID-GaN (HEMT) 

Si(111) Substrate 

AlGaN (HEMT) 
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Process Flow for GaN LED-HEMT 
Integration 3	

LED n-contact and  
HEMT ohmic contact  

Lithography: patterning 
Metal deposition and lift-off (Ti/Al/Ni/Au) 
Annealing 

LED p-contact  
(Transparent Conducting Layer, TCL) 

Lithography: patterning 
Metal deposition and lift-off (Ni/Au) 
Annealing 

HEMT gate formation 
Lithography: patterning 
Metal deposition and lift-off (Ni/Au) 

p-GaN (LED) 

n-GaN (LED) 

AlGaN (HEMT) 

UID-GaN (HEMT) 
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Process Flow for GaN LED-HEMT 
Integration 4	

Dielectric deposition and  
passivation 

PECVD SiN/SiO2 deposition 
Lithography: patterning 
SiN/SiO2 etch 

Metal Interconnect 

Lithography: patterning 
Metal deposition and lift-off (Ti/Au) 

p-GaN (LED) 

n-GaN (LED) 

AlGaN (HEMT) 

UID-GaN (HEMT) 

Si Substrate  

AlGaN (HEMT) 

UID-GaN (HEMT) 

p-GaN (LED) 

n-GaN (LED) 
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LED and HEMT Integration	

HEMT 

LED 

LED 

LED 
LED 

HEMT 

HEMT 
HEMT 
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HEMT Characteristics on the LED-HEMT 
Wafer 	
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Device dimensions:   
 Lsd=8.5 µm; Lg=2.5 µm 

Main characteristics: 
 Idmax: 770 mA/mm (at Vg=1V); Ron: 3.55 Ω-mm 
 Gmmax: 166 mS/mm; Vth= - 4.04 V 

MIT-Singapore SMART LEES Program  
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LED 

HEMT 

Vg_HEMT=-1 V to 1.5 V 
Vdd=12V  

Optical Characteristics of the Integrated  
LED-HEMT: CCD Images 1	
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Integrated GaN Lighting System? 
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We can also integrate a Photodetector… 

Probe 

MIT-Singapore SMART LEES Program  
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As well as more complex electronics… 
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Summary… The light bulb of the future… 
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Integration will be key to reach the right price 
target for the light bulb of the future. 
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