Transmission Investment Assessment Under Uncertainty

Benjamin F. Hobbs¹
Pearl Donohoo-Vallett²
Jonathan Ho³
Saamrat Kasina
Jasmine Ouyang⁴
Sang Woo Park
Elina Spyrous
Qingyu Xu

Environment, Energy, Sustainability & Health Institute, Johns Hopkins University

¹Also: Chair, Market Surveillance Committee, CAISO
²Now Brattle Consultants, Washington, DC
³Now NREL, Golden, CO
⁴Now Ethree Consultants, SF, CA

CERTS Program Review 2015; Thanks to CERTS, WECC, NARUC, NSF for support
1. What is the impact of model simplifications?
 (a) Uncertainty, (b) Generator flexibility constraints,
 (c) KVL?

2. Should we build the Champlain-Hudson line now?
 Or wait 10 years (or more)?

3. How does including physical line options change the
 optimal mix of transmission?

4. Do plans based on a few extreme (“stratified”) scenarios
 perform as well as (or better than!) full stochastic
 programming?

5. Would co-optimization lead to different transmission
 plans for the 2011 EIPC project?
Method: JHSMINE
(Johns Hopkins Stochastic Multi-stage Integrated Network Expansion)

Stage 2014: “Today’s Choices”

Choose Yr 10 investments in:
- Transmission
- Generation

Stage 2014: “Today’s Choices”

Choose Yr 10 investments in:
- Transmission
- Generation

Stage 2024: “Tomorrow’s Choices”

Choose Yr 20 investments in trans / gen
- Operations

Stage 2024: “Tomorrow’s Choices”

Choose Yr 20 investments in trans / gen
- Operations

Uncertainty (Multiple Scenarios):
- $ Fuels
- Load growth
- Technology
- Policies

Deterministic Approach:
One model for each scenario

JHSMINE: Solve all cases at once in one model
Optimize the **objective:**
Minimize (probability-weighted, present worth) of cost over 40 yrs

By choosing values of decision variables:

- Transmission investment (0-1)
 - 10 yr “portal” (optional) lines (in addition to Common Case lines)
 - 20 yr lines
- Gen investment & dispatch (*co-optimized*)

Respecting constraints:

- Kirchhoff’s laws (linear OPF)
 - Load by hour
- Generator operating constraints
 - Variable renewable availability by hour
- RPS
- Siting restrictions

Accounting for uncertainties:

- load/renewable conditions (hourly variability)
- **IN STOCHASTIC MODEL:** long-run study cases
Mathematical structure
(van der Weijde & Hobbs, 2012; Munoz et al. 2014)

\[
\begin{align*}
\text{MIN} & \quad C_1 X_1 & + & \sum_{\text{scenarios } S} P_S \ast C_2 X_{2,S} \\
A_{1,1} & \quad X_1 & + & \{A_{2,1,S} X_1 \} \leq B_1 \\
\{A_{2,2,S} X_1 \} \leq B_{2,S} \}, \ \forall S
\end{align*}
\]
Two versions of JHSMINE-WECC

21 TEPPC Zone “Pipes-&-Bubbles”

300 bus network: Both Linearized DC OPF & “Pipes-&-Bubbles” versions
(Thanks Yujia Zhu & Dan Tylavsky!)
1(a) Do solutions change if we ignore:

- Uncertainty?
 - Deterministic vs. stochastic
 - Effect of # of scenarios
 - Effect of probability of scenarios

- YES
- NOT MUCH
- LITTLE
Alternative Study Case/Scenario Sets: 1, 5, and 20

Deterministic

Base Case

Stochastic (5)

Base Case

Study Case 1: Econ Recovery
Study Case 2: Clean Energy
Study Case 3: Short-term Consumer Costs
Study Case 4: Long-term Societal Costs

Stochastic (20)

Base Case

2013 Study Cases (4)

Technical Advisory Cases (9)

“Gap” Scenarios (6)

Three groups of uncertain parameters (24 parameters):

- P-Carbon, P-Gas, Energy growth
- RPS, Renewable capital cost
- Peak growth, storage
Example: Optimal “Portal” 10 yr Transmission (21 Zone model)

Optimal under just **Base Case** (100% probability)

Heuristically combine deterministic results:
Optimal in ≥3 of 5 2013 Study Case models

Stochastic Optimum under 5 (and also 20) study cases (equal chance of each scenario)

Stochastic line not chosen in any single scenario model!

- Expected PW cost under 20% chance of each of 5 study cases:
 - $681.4B
 - $680.3B
 - $678.5B (optimal)
Compare Yr 10 Lines Under Alternative Scenario Sets (300 bus case)

Optimal under **Base Case**

Optimal under **5 Scenarios (20% Probability Each)**

Optimal under **20 Scenario Case (5% Probability each)**

Expected suboptimality cost penalty under 5% chance of each of 20 scenarios:
- **$14.2B**
- **$1.8B**
- **$0B Optimal**
Compare 1st Stage Lines Under Alternative Probabilities of 20 Scenarios (300 bus network)

Differentiated Probabilities for 20 Scenarios

Equal Probabilities

20 Case Stochastic Adjusted Probability

20 Case Stochastic Equal Probability
1(b) Do solutions change if we ignore unit commitment constraints on generator flexibility? *In some cases*
What if we include Generating Unit Commitment constraints?

• What is impact of more accurate production costing upon 1st and 2nd stage transmission?

 \textit{Simple “load duration curve” method (assumes infinite flexibility) versus Unit commitment (UC) approximation (captures flexibility limits)}

• Simplified “relaxed” UC preserves computational efficiency of linear program \cite{KasinaWogrinHobbs2014}:
 – Approximates start-up costs, Pmin constraints
 – Imposes ramp constraints
 – 72 hours (3 days) x 5 scenarios x 2 stages x 21 zones
Sample 24 hr energy profile from Colo.: *Without UC operational constraints (2035, Econ Recovery Scenario)*
Example gen profile (CO) with UC operational constraints

Periods when ramp rate or \(P_{\text{min}} \) constraints bind
No change in 2025; 2035 Transmission change with UC constraints (Econ Recovery Scenario)
1(c) Do solutions change if we ignore KVL? YES
21 vs 300 bus network: Recommended regional interconnections

5 Study Case 21 Zone

5 Study Case 300 Bus
Compare 300 bus network: “Pipes & bubbles” vs. KVL

86% of P&B investment also made in KVL

49% of KVL investment also made in P&B
Should we build the CHPE now? **No**

Or should we wait 10 yrs, and see what happens to Indian Point, $P_{\text{gas}}, P_{\text{CO}_2}$? **Yes**

Biao Mao, Dan Shawhan, William Schulze, Ray Zimmerman
Cornell University

Saamrat Kasina, Ben Hobbs
Johns Hopkins University
Real Options Analysis

Assumptions

1. Transmission is longest lived & most irreversible investment. We decide whether to build it now, wait 10 years to build (depending on what is learned), or never build.

2. Gen investment & operations “follows” transmission. We anticipate how the CHP line affects both.

3. Gas & Carbon prices, and Indian Point Retirement decisions are uncertain.
Decision Node:
Build CHP

Decision Node:
Build, dispatch Gen

Social net benefits of path (decisions/scenarios) from E4ST
Socially Optimal 2nd Stage (2035) CHP Decisions, Conditioned on 2025 Uncertain Outcomes

(Tentative results, not for citation)

If line costs $0B:

<table>
<thead>
<tr>
<th>Chance Node</th>
<th>Indian Point and Gas Price Outcomes</th>
<th>IP Open</th>
<th>IP Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>LP_{co2}</td>
<td>L P_{gas}</td>
<td>L P_{gas}</td>
</tr>
<tr>
<td>Price</td>
<td>MP_{co2}</td>
<td>H P_{gas}</td>
<td>H P_{gas}</td>
</tr>
<tr>
<td>Outcomes</td>
<td>HP_{co2}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If line costs $1.5B:

<table>
<thead>
<tr>
<th>Chance Node</th>
<th>Indian Point and Gas Price Outcomes</th>
<th>IP Open</th>
<th>IP Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>LP_{co2}</td>
<td>L P_{gas}</td>
<td>L P_{gas}</td>
</tr>
<tr>
<td>Price</td>
<td>MP_{co2}</td>
<td>H P_{gas}</td>
<td>H P_{gas}</td>
</tr>
<tr>
<td>Outcomes</td>
<td>HP_{co2}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optimal Policy for $1.5B line

- Wait for now
- Then build for 2035:
 - IF gas prices go up, OR
 - IF \{IP open \& CO2 price high\}

If line costs $3B:

<table>
<thead>
<tr>
<th>Chance Node</th>
<th>Indian Point and Gas Price Outcomes</th>
<th>IP Open</th>
<th>IP Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>LP_{co2}</td>
<td>L P_{gas}</td>
<td>L P_{gas}</td>
</tr>
<tr>
<td>Price</td>
<td>MP_{co2}</td>
<td>H P_{gas}</td>
<td>H P_{gas}</td>
</tr>
<tr>
<td>Outcomes</td>
<td>HP_{co2}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Does including physical options change the optimal mix of transmission lines? **YES**
Includes “Flexible Expand” option of 2-circuit towers but only install conductors for single circuit
 • *Gives option of cheap 2nd circuit addition later*

Optimized using 5-stage optimization (MILP)
 • \(~1M\) variables for California
Preliminary Results (Not to be cited)

T=0 Decisions

- Permit Nonflexible (2/2)
- Permit Flexible (1/2)

T=5 Decisions

High Demand

- Defer (2/2)
- Build now (2/2)

Low Demand

- Build now (1/2)
- Defer
4. Clever Selection of Scenarios

Do plans based on a few extreme ("stratified") scenarios perform as well as full stochastic programming? Almost
Or even better (in terms of min-max regret)? Yes

Sang Woo Park and Pearl Donohoo
Actual Performance (against 20 Scenarios) of First Stage Transmission & Generation Plans

Expected Cost Against 20 Scenarios

- Three stratified scenarios (e.g., “HHH”, “MMM”, “LLL”) do consistently well!
Stratified (3 Scenario) Plans Do Better than Stochastic (20 Scenario) in “Min Max Regret”

Next: More cases to establish robustness of (& reasons for) stratified solution performance
Would co-optimization lead to different transmission plans & costs for the 2011 EIPC project (under the high carbon future)?

YES

Evangelia Spyrou & Jonathan Ho
Strategic transmission planning for the Eastern Interconnection:
- Planning horizon: 2011-2030
- High carbon tax scenario: $27/t (2015) → $140/t (2030)
- Declining load

Eastern Interconnection:
- 24-node transportation network
- 47 interfaces

Mixed-Integer LP:
- Lumpy investments
- Linear dispatch meeting a 20-block load duration curve

Compare 3 Approaches to Coordinating Gen and Trans

Traditional Planning

- Generation Planning
 - Generation Siting/Mix Scenario
- Transmission Planning
 - Transmission Plan

Iterative Cooptimization

- Optimize Generation
 - Generation Scenario
- Optimize Trans
 - Transmission Expansion
- Optimize Generation
 - Generation Scenario
- Optimize Trans
 - Transmission Expansion

Simultaneous Cooptimization = Proactive Planning

- Optimize Generation & Transmission Investment Together
 - Transmission Plan & Consistent Generation Siting/Mix

Simulates “proactive planning” (Sauma & Oren)

Etc.
Eastern Interconnection results

- **Anticipative/Proactive planning saves:**
 - ~56 $bn compared to EIPC approach
 - ~13 $bn compared to iterative approach

- **Savings achieved by investment in more & higher quality wind:**
 - Avoided fuel and carbon tax costs
 - But increased capital costs
Eastern Interconnection results

EIPC heuristics mainly identified expansions of direct links, while co-optimization identified indirect links.
Conclusions

➢ Stochastic plans are different & likely better
 • Distinct lines not picked by deterministic models
 • $3B-$14B is value of better near-term decisions in WECC – even under scenarios not considered!
 • “Robust planning” (pick lines that look good under most deterministic runs) falls short

➢ Stochastic planning is practical
 • Get most of benefits by including just a few scenarios

➢ Other approximations as important as assuming certainty
 • Failing to co-optimize
 • Network aggregation (21 vs 300)

➢ Next:
 • Economic cost of simplifications
 • Detailed regional study for BPA
 • Complete CHP analysis & line option analyses