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Timeline
● Project provides fundamental 

research to support DOE/Industry 
advanced engine projects.

● Project directions and continuation 
are evaluated annually.

Budget
● Project funded by DOE/VT:

FY14 – $720k
FY15 – $680k

Barriers
● Increase the efficiency of LTGC / 

HCCI.
● Extend LTGC / HCCI operating 

range to higher loads.
● Improve the understanding of 

in-cylinder processes.

Partners / Collaborators
● Project Lead:  Sandia ⇒ John E. Dec
● Part of Advanced Engine Combustion 

working group – 15 industrial partners
● General Motors – in-depth collaboration
● Cummins – spark-plug cylinder heads
● LLNL – support kinetic modeling
● Univ. of Calif. Berkeley – CFD modeling
● Univ. of Melbourne – biofuels & analysis

methods
● Chevron – advanced fuels for LTGC

Overview



Objectives - Relevance

FY15 Objectives ⇒ Increased Efficiency, High Loads, Improved Understanding

● Energy-Loss Distribution:  Determine magnitude of loss terms (heat transfer, 
combst. inefficiency, exhaust) & how they change with operating conditions.
⇒ Understand the Trade-offs to Improve the Thermal Efficiency

● DI Partial Fuel Stratification (DI-PFS) for improved Thermal Efficiency (TE):  
Systematically evaluate the TE gains possible with DI-PFS for both single 
and double direct injections ⇒ including various injection strategies for 
double DI (multi-year task). 

● Fuel-Distribution Imaging:  Apply PLIF imaging in optical eng. to understand 
how GDI strategies affect φ-distribution, to help optimization (multi-year task)

● Performance mapping with new low-swirl head:  Compare TE and load 
range for new cylinder head with data from old head at selected conditions. 

● Support Modeling:  Chemical-kinetics at LLNL & CFD at UC-Berkeley & GM.

Project objective:  to provide the fundamental understanding 
(science-base) required to overcome the technical barriers to the 
development of practical LTGC / HCCI engines by industry.



Approach

● Metal Engine⇒high-quality performance data ⇒ well-controlled experiments
– Energy-Loss Distribution:  Acquire data for several parameter sweeps & analyze.
– DI-PFS for increased TE:  Systematically evaluate TE vs. load for multiple fueling 

strategies ⇒ 1) well-premixed, 2) single-injection DI at two Tins to separate out effect 
of initial charge T, 3) double-injection DI for a range of late DI timings & fuel fractions.

● Optical Engine ⇒ detailed investigations of in-cylinder processes.
– Fuel Distribution Imaging: 1) PLIF imaging calibrated in-situ; 2) Vertical laser sheet 

to see all elevations, 3) Obtain φ-map images for various fuel-injection strategies.
⇒ Guide application of PFS in metal-engine for higher TE   ⇒ Model validation

● Analytical Techniques ⇒ Develop & apply 1) duplicate methods for computing 
energy lost to heat transfer and exhaust, 2) method to determine changes in TE 
attributable to changes in CA50 & γ ⇒ Guide further TE improvements

● Computational Modeling: 1) Collaborate with UC-B and GM on CFD modeling for 
improved understanding of PFS. 2) Work with LLNL on kinetic mech. for Cert-fuel.

● Combining techniques provides a better understanding & more-optimal solutions
● Transfer results to industry: 1) physical understanding, 2) improved models.

● Use a combination of metal- and optical-engine experiments, analysis and 
modeling to build a comprehensive understanding of LTGC processes.



Approach – Milestones
● September 2014

Complete installation and shakedown testing of new low-swirl cylinder head 
with spark-assist capability.
⇒ Postponed Milestone until September 2015:  Needed to complete double-

injection DI-PFS study with the same cylinder head used for previous work.
⇒ New head has now been installed and initial testing is underway. 

● December 2014
Prepare and submit a paper on recent results to the SAE International 
Congress.

● March 2015
Determine the magnitude of the various energy losses for LTGC-engine 
operation (combustion inefficiency, heat transfer, and exhaust energy) and 
how they change with operating conditions.

● June 2015
Present an overview of project accomplishments and directions at the DOE 
Annual Merit Review.

● September 2015
Major Milestone - Determine the effectiveness of double-injection fueling 
strategies for reducing the heat-release rate in LTGC engines over a range of 
injection timings and fuel-fraction splits between the two injections.













Unless noted: Ringing ≤ 5 MW/m2 & spd = 1200 rpm
NOx & soot emiss. more than 10x below US-2010

Sandia LTGC Engine Laboratory

All-Metal 
Engine

Optical 
Engine

Optics Table

Dynamometer

Intake Plenum

Exhaust Plenum

Water & Oil 
Pumps & 
Heaters

Flame 
Arrestor

● Matching all-metal & optical LTGC research engines.
– Single-cylinder conversion from Cummins B-series diesel.

Optical Engine

All-Metal Engine

● Bore x Stroke = 102 x 120 mm 
● 0.98 liters, CR = 16:1



Accomplishments – Overview

● Determined magnitude of energy-loss terms (heat transfer, combustion 
inefficiency, exhaust) & evaluated changes for several parameter sweeps
– Developed analysis techniques for heat-transfer loss and exhaust loss terms.
Developed analysis technique for change in TE attributed to changes in CA50 & γ.

 Extended heat-transfer analysis technique to developed a more objective & 
accurate method for determining the onset of knock in LTGC engines.

● Completed an in-depth study of DI-PFS for increased TE using both single 
and double direct injections.
– Various GDI timing and fuel-fraction strategies evaluated.
Analyze energy-loss terms to explain changes in TE for double-DI strategies. 

● On track with PLIF imaging study to understand how changes in GDI 
injection strategy affect the in-cylinder fuel distribution.
– Resolved problem with optical engine.

● Facility upgrade ⇒ completed modifications to new cylinder head for low-
swirl, 300-bar GDI injector and spark assist, and installed head on engine. 
– On track to complete shakedown tests & performance comparison this FY.

● Collaborated with UC-B and GM on CFD modeling and LLNL on kinetics.

 Indicates additional accomplishment not in original objectives.
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● Heat Transfer computed by two methods: 
1) Woschni HT correlation with coeffs. adjusted 

to make HRR flat before and after combustion. 
⇒ Also total HR equals energy of burned fuel.

2) Exhaust loss and energy closure ⇒ Exh Loss 
based on TEVO, corrected for work after EVO.

– HT similar for both ⇒ confidence in analysis

● Changes in CA50 and γ directly affect whether 
energy produces work or is lost to exhaust.  
– Compute changes in TE and EL using ideal 

Otto-cycle analysis using γ based on real-gas 
properties averaged over expansion stroke
⇒ with CR = Effective ER.

Energy-Distribution Analysis
● Understanding the reasons for changes in TE with operating conditions is 

critical for finding ways to improve efficiency.

● Analyze how Energy distribution varies with conditions.
– Energy-loss terms:  1) combst. inefficiency, 2) heat transfer, 3) Exhaust Loss (EL)
– Energy shift, Work  EL: 1) Effective Expansion Ratio (ER), CA50, 2) γ =cp/cv
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● As φm increases, TE increases to a 
maximum of 49.3%, then decreases.

● Improved Combustion Eff. (CE)
explains increase, but not decrease. 

● Analysis of energy-loss terms with 
increasing φm shows:
– Combustion inefficiency decreases
– Heat transfer losses decrease
– Exhaust losses increase significantly

> Woschni & TEVO methods give similar 
trends ⇒ Woschni considered more accur.

● Decrease in TE is related to increase 
Exhaust Losses (EL).
⇒ What are the causes?

Changes in Energy Dist. for φm Sweep
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● CA50 is retarded with increased φm to 
hold RI = 5 MW/m2.
⇒ Eff. ER , Decreases TE & incr. EL

● γ decreases with higher φm (T, EGR, TA)
⇒ Decreases TE and increases EL

● Lower HT & better CE increase TE & EL
● γ-effect > CA50-effect on the TE reduction. 
● Sum of individually computed terms 

closely matches EL based on Woschni.

Contributions to Exhaust Loss for φm Sweep 
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● Energy distribution analyses also conducted for:
1) Two CA50 sweeps
2) Tin sweep
3) Speed sweep
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● “Stacked” plot more clearly shows the shift and reasons for changes in TE.  

Shift of Energy Distribution over φm Sweep

● Decreased TE for
φm < φm-Max-TE due to:
– Reduced CE for 

CA50 after TDC.
– Increased HT for 

CA50 before TDC.

● Decreased TE for 
φm > φm-Max-TE due to:
– Lower gamma (γ)

⇒ φm, Tcombustio, and 
EGR all higher.

– Lower Exp-Ratio 
⇒ more retarded CA50 
to prevent knock.

● Effect of γ dominates 
over CA50 retard.

● Improved CE and 
reduced HT mitigate γ
and CA50 effects.

RI = 5 MW/m2



● As load (φm) increases, or CA50 
advanced, PPRR & RI increase 
⇒ RI ~ PPRR2/Pmax.
– Excites acoustic modes of chamber.
– Weak ripples even for low PPRR, but 

no detrimental consequences.

● If acoustic oscillations (Ringing) 
become too intense
⇒ Distinctive irritating sound
⇒ Commonly known as engine knock.

● Criterion required to define knock onset.

● Magnitude of ripples ⇒ energy content 
of 1st acoustic mode, Knock Integral (KI)

● Not always consistent ⇒ sensitive to 
location of pressure transducer relative to 
direction of acoustic wave.

● A better metric is needed.

Determining the Onset of Knock
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● Previously, selected RI = 5 MW/m2

as the maximum RI w/o knock.
– Based on knocking sound and strong 

ripples on P-trace ⇒ somewhat subject.

Example: CA50 sweep at constant φm

● As CA50 advanced, RI increases
⇒ TE due to greater Exp Ratio.

● Also, RI due to increased PPRR. 
⇒ Strong knock at more adv. CA50s.

● KI increases, but no distinct indicator of 
knock ⇒ sensitive to direction of P-osc.

● HT at a greater rate for RI > 5
– P-osc. have associated Vel-osc., HT
– Woschni 2nd coeff. indicates combust-

induced velocities & captures this effect. 

● C2 is a consistent, objective indicator of 
knock ⇒ a spatially integrated measure 

Improved Metric for the Onset of Knock

0
2
4
6
8
10
12
14
16
18
20

43.0
43.5
44.0
44.5
45.0
45.5
46.0
46.5
47.0
47.5
48.0

372 374 376 378 380

Ri
ng

in
g 

In
te

ns
ity

 [M
W

/m
2 ]

Th
er

m
al

 E
ffi

ci
en

cy
 [%

]

CA50 [°CA]

TE

RI

R
I =

 5
 M

W
/m

2

(k
no

ck
 o

ns
et

)

φm = 0.42

● Verified for several param. sweeps 
⇒ most match RI = 5 MW/m2.



● PFS with DI fueling can significantly 
improve TE and/or max. load.
– Single DI at 60° CA (DI-60) ⇒ mixing is 

incomplete ⇒ gives PFS.
– PFS reduces HRR if fuel is φ-sensitive.
⇒ More adv. CA50 or incr. load w/o knock.

– DI fueling allows lower Tin w/o fuel conden.

● Baseline: PreMixed(PM) fueling, Tin = 60°C

● Single DI-60, Tin = 73°C to match TBDC of 
PM with Tin = 60°C (fuel-vap. cooling).
– TE ~0.5% ⇒ CA50 adv, but not sufficient. 

Perhaps HT⇒ further analysis required.

● Single DI-60, Tin = 40°C ⇒ Lower Tin means:
– PFS more effective ⇒ greater CA50 adv.
– Tcombust, EGR, φm (ρ) ⇒ higher γ
– Tin and Tcombust⇒ less HT

DI-PFS with Single Injection
Pin = 2.4 bar, RI = 5 MW/m2, 1200 rpm

● Peak TE increases by 1.0 %-units ⇒ TE at 13 bar IMEPg increases 2.5 %-units.
● Substantial TE benefit to Single-DI-PFS w/ lower Tin ⇒ particularly at high loads.
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● Can further gains in TE be made by 
increasing the fuel stratification?

● Double-DI PFS = Early + Late DI injections 
(DDI-PFS) 
– Hold Early-DI timing constant at 60° CA.
– Varying timing and fuel fraction of the late-DI 

injection.

● Although single-DI PFS already reduces 
Peak PRR & HRR significantly vs. PreMixed
⇒ DDI-PFS gives a much greater reduction.
– Better optimizes stratification to further slow HR.

● Peak HRR  and burn duration 
progressively with increasing late-DI fraction.
– Late-DI fraction increased from 8%  35% of 

total fuel ⇒ holding late-DI timing = 305° CA.

● DDI-PFS should allow significant CA50 
advancement w/o knock (RI ≤ 5 MW/m2).
– CA50 advancement will act to improve TE.
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CA50 and TE for Double-DI PFS at φm = 0.4
● Systematically vary both DI timing 

and DI fraction.

● CA50 for RI = 5 MW/m2 advances 
progressively as stratification is 
increased by both:
– Later late-DI timing
– Greater late-DI fraction 
– Should increase TE.

● However, max. TE is about the same 
for all late-DI fractions ≥ 14%.
– Optimal late-DI timing for each DI%.

● CA50 continues to advance for later 
DI-timings, acting to improve TE.

● Therefore, other factors must act to 
reduce TE for these later late-DI 
timings down to the measured values.
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● Combustion Efficiency (CE) for DDI-PFS 
⇒ Decreases with greater stratification.
– Later Late-DI timing & greater Late-DI%

● Due to increased CO from overly rich 
regions. HC emissions are slightly lower.
– Smoke is near zero at peak TE points, but 

rises rapidly for later late-DI timings.
– NOx increases slightly, but remains more 

than a factor of 20 below US-2010 stds. 

● CE acts opposite CA50 advancement
– Accounts for about half of discrepancy.

● Apply HT analysis ⇒ found that HT loss 
increases with increased stratification.
– Due to adv. CA50 or to injection velocities?
– Additional studies needed to understand.

● Sum of expct’d TE gain for CA50 + losses 
from CE & HT closely match expr. TE.

● Explains the limit of the TE improvement.



DI-PFS with Single and Double Injections
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Estimated TE gain 
for D-DI over S-DI
for CA50 adv. only 
(no HT or CE), 
up to soot onset pt

● Have shown that Single-DI PFS, Tin = 40°C
substantially increases TE vs. PreMixed.

● D-DI PFS further incr’s TE at higher loads.
– Later CA50 ⇒ advance w/ PFS ⇒ TE.

● No TE gain with D-DI at lower loads where
CA50 close to TDC (< ~368°CA).
– Also, HT mitigates TE gain w/ CA50 adv.

● D-DI PFS acts to further flatten TE vs. load
curve ⇒TE at 13 bar IMEPg close to TEPeak

● Noteworthy that CA50 advancement w/ D-DI 
PFS could give even greater TE gains if 
increase in HT & CE loss could be mitigated.
– More-optimized strat. ⇒ likely reduce CE loss.

● D-DI PFS could also incr. max load if not O2 ltd.

● Further gains likely at other oper. conditions 
and with regular gasoline, AKI 88 (RON 91).
– Current data for E0-Cert fuel, AKI 93 (RON 97)



Response to Reviewer Comments
1. Reviewers made many positive comments. ⇒ We thank the reviewers.

2. Several comments supported the CFD modeling work, requested more details, 
mentioned model validation, and use of the models to guide PFS optimization. 
– CFD modeling can provide an important complement to expr. work.  However, the models 

currently show limited agreement w/ experiment ⇒ See Backup Slides for FY14 & FY15.  
– Does not seem valuable to provide more-detailed results until models are improved for 

better agreement.  ⇒ Currently, kinetic submodels appear to be a key problem.
– We plan to compare fuel-distribution images w/ model as become available.  ⇒ Will help 

model validation.  Unclear if models will be accurate enough to guide expr. as hoped.
– A difficulty is that the modeling effort has limited resources and is not directly linked with 

our expr. program.  ⇒ Progress could likely be improved with in-house modeling effort.

3. Will future work investigate more than two injections? - Yes
– The best PFS performance requires a high level of stratification w/o overly rich regions that 

produce CO & reduce CE, as can occur with only two injections ⇒ see previous slides.  
– Three or more injections offer the potential to better tune the mixture distribution.  We plan 

to investigate this in combination with PLIF imaging, and multi-zone kinetic modeling to help 
determine desired distribution.  CFD may also be used to guide if results can be improved.

4. Practical considerations – est. brake TE, required turbo eff, transient controls.
– Current work is on fundamentals of PFS mixture ⇒ As we move to new studies of high-load 

and TE limits with regular E10, we will apply turbo and friction models for est. brake TE.
– Combst. ctrl. systems can require substantial resources ⇒ OEMs ?  However, we do have 

plans to study potential of Spark Assist for ctrl. & use of small late fuel injection as a trigger.



Collaborations
● Project is conducted in close cooperation with U.S. Industry through the 

Advanced Engine Combustion (AEC) / HCCI Working Group, under a 
memorandum of understanding (MOU).
– Twelve OEMs, Three energy companies, Six national labs, & Several universities.

● General Motors:  Bimonthly internet meetings ⇒ in-depth discussions.
– Provide data to GM on boosted LTGC and for modeling PFS-LTGC.

● Cummins, Inc.:  Design & fabrication of low-swirl, spark-plug cylinder heads.

● LLNL: Support the development and validation of a chemical-kinetic 
mechanism for Certification Gasoline (CF-E0), Pitz et al. 

● U. of California - Berkeley:  Collaborate on CFD modeling of PFS-LTGC.

● U. of Melbourne, Australia:  Collaborate on analysis methods.  Patent 
application filed on new biofuels. 

● Chevron:  Funds-In project on advanced petroleum-based fuels for LTGC.



Future Work
Extend Operating Range of PFS-LTGC (multi-year task)
● Evaluate potential for extending the benefits of PFS over a wider load & speed 

range by using E10 regular gasoline and reducing the CR to 14:1.
– Research-grade regular E10 reactivity > current Cert-Fuel (AKI = 88 vs. 93)
– Analysis indicates that these changes will increase load range for PFS
– Changes more in-line with OEM targets, but will reduce TE ~1.0 to 1.5 %-units.

● Investigate multiple-injection strategies to better optimize PFS for this config.
● Image fuel distributions in optical engine to guide fuel-injection strategies.
● Guidance from multi-zone kinetic models on desired fuel dist., & CFD if practical

Apply New Capabilities and Analysis Techniques
● Potential of 300 bar GDI injector to improve PFS, & late injection for control.
● Parameter sweeps to study range of conditions w/ potential for spark-assist ctrl.
● Heat-transfer analysis to understand cause of tradeoffs with fueling strategies.
● Apply turbo-charger and friction models from GM to evaluate these effects.

Support of LTGC/HCCI Modeling
● Continue to provide data, analysis, and discussions to support:  1) kinetic  

modeling at LLNL, and 2) CFD modeling at UC-Berkeley and GM.



Summary
● Developed analysis techniques to compute the heat transfer and exhaust 

losses independently. ⇒ Used energy-closure to show they agreed well. 
– Also developed technique to compute the energy shift between TE & Exh-Loss 

for changes in CA50 and γ.  ⇒ Showed that it gives a very good energy closure.

● Applied these techniques to determine the shift in energy distribution over 
a fueling rate (φm) sweep, and sweeps of CA50, Tin, & engine speed. 
⇒ Understanding the tradeoffs helps guide further TE improvements.

● Discovered that changes in Woschni 2nd HT coefficient give a consistent, 
objective indicator of knock onset.  ⇒ Verified for several parameter sweeps.

● Investigation of Single-DI PFS with injection early in intake stroke showed:
– TE ~0.5 %-units above Premixed, even with higher Tin to match TBDC of Premix
– Much larger TE improvement w/ Tin = 40°C ⇒ higher γ, less HT, more adv CA50

● Conducted an in-depth study of Double-DI PFS ⇒ Early + Late DI inj.
– Can greatly increase strat. for a large reduction in HRR and large CA50 adv.
– Lower CE & increased HT can mitigate the large TE gain from CA50 advance
⇒ but Double-DI PFS still significantly improves TE at higher loads.

● Collaborated with CFD modelers at UC-B & GM on PFS, & chemical-kinetic 
modelers at LLNL on certification gasoline ⇒ see Technical B-up Slides



Technical Backup Slides



LLNL Collaboration – Kinetic Modeling
● Collaborators: Pitz and Mehl ⇒Worked on the development of a mechanism for 

zero-ethanol Certification Gasoline (CF-E0) from Haltermann (97 RON, 93 AKI).
– CF-E0 is widely used by industry for certifying performance and emissions of 

gasoline spark-ignition automobiles.

● CF-E0 used for Sandia LTGC 
experiments, FY13 – FY15. 
⇒ Data for model validation.

● LLNL developed a chemical-kinetic 
mechanism based on a 5-component 
surrogate.
– Toluene + branched & straight-chain 

alkanes.

● Mechanism transferred to UC-Berkeley 
for CFD modeling of PFS with CF-E0.
– UC-B reduced mechanism to 250 species 

for CFD.

● Provided experimental LTGC-PFS data 
using CF-E0 to UC-B for CFD modeling.
⇒ See next slide for UC-B collaboration.
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UC-Berkeley Collaboration – CFD Model of PFS
● Collaborators: Dr. Ben Wolk & Prof. J-Y Chen (funding DOE-NSF grant).

– Supplied and explained expr. PFS data and engine geometry for grid development.
– Guide interpretation of modeling results and give feedback for improvement.

● FY15 work focused on standard PFS (premixed 
+ late DI): DI timing sweep w/ 13% DI fueling.
– Model captures comb. timing, but not HRR shape. 
⇒ too much early HR even for Premixed (PM).

– Analysis shows this is from kinetic mech., not CFD.

● Kinetic mechanism does correctly capture 
sequential autoig. from richest to leanest zones.

● Efforts underway to determine if problem
is in basic mech., 
or the result of 
reducing mech. 
for CFD.

● Also working on 
another dataset 
for PFS with 
CF-E0 (Cert. Fuel).
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