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Learning from the NAS workshop

• Anna Willett, director of the Interstate Technology and 
Regulatory Council (ITRC), identified that “Different 
agencies conduct risk assessments differently, and 
there should be better alignment among agencies and 
states on risk assessment and risk reduction.”

• Many of the NRC committees stress that “A formalized 
decision-making process provides consistency and 
transparency in agency decisions.”

• NRC (2005) enumerated a list of characteristics of a 
credible decision-making process, highlighting the 
importance of credible and believable results.
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Our Observations

A.   Tower of Babel

B.   “Colossal” computational burdens

3



Our observation A: Tower of Babel

• Tower of Babel: The number of model/risk 
analysis methods

• Even methods that measure the same aspect 
of model/risk analysis are often presented in 
ways that make them difficult to compare. 

• Impedes clear dialogue between scientists, 
decision-makers, and stakeholders. 

• Obscure the very model comparisons and 
evaluations that need to be transparent

4Hill et al. (2015, Ground Water)



A strategy for the “Tower of Babel” 

1. Introduce typology to organize the diversity of 

model/risk analysis methods. 

Organize common concerns and applicable methods. 
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Observations (Obs)

8 Which pars are important and unimportant to preds?
9 How certain are the preds? 
10 Which pars contribute most and least to pred uncertainty?

Parameters (Pars)Observations (Obs)

Predictions (Preds)Parameters (Pars)

Sensitivity and Uncertainty

Model Adequacy
1 How can many data types with variable quality be included?
2 Is model misfit/overfit a problem? Are prior knowledge and 

data subsets inconsistent?
3 How nonlinear is the problem?

4  What pars can and cannot be estimated with the obs? 
5  Are any pars dominated by one obs and, thus, its error? 
6 How certain are the par values? 
7 Which obs are important and unimportant to pars? 

Predictions (Preds)
11 Which existing and potential obs are important to preds? 
12 For multi-model analysis, which models are likely to 

produce accurate preds? 

Questions addressed by model analysis

Risk Assessment
13 What risk is associated with a given decision strategy? 
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Observations (Obs)
Cross Validation

Cross Validation

8 Which pars are important and 

unimportant to preds?
9 How certain are the preds? 

10 Which pars contribute most and 

least to pred uncertainty?

Parameters (Pars)Observations (Obs)

Predictions (Preds)Parameters (Pars)

Sensitivity and Uncertainty

Model Adequacy
Error-based weighting and  SOO 

or MAP 

Compare fit to a priori error 

analysis using sn
2, s(n-p)

2, RMSE, 

Nash-Sutcliffe, graphs

Intrinsic nonlinearity, DELSA

1 How can many data types with 

variable quality be included?
2 Is model misfit/overfit a problem?

Are prior knowledge and data 

subsets inconsistent?
3 How nonlinear is the problem?

MOO, Pareto curve

MOO, Pareto curve

DELSA, Explore objective function,

4  What pars can and cannot be 

estimated with the obs? 
5  Are any pars dominated by one 

obs and, thus, its error? 
6 How certain are the par values? 
7 Which obs are important and 

unimportant to pars? 

Scaled local stats  (CSS, ID, PCC, 

etc.), SVD, DoE,  MoM (OAT)

Scaled local stats (Leverage, 

DFBETAS)

Par uncertainty intervals

Scaled local stats (Leverage, 

Cook’s D)

DoE,  MoM (OAT), eFAST, Sobol’, 

RSA, CSE  

Cross Validation

Par uncertainty intervals3

Cross Validation

Predictions (Preds)

DELSA, FAST, Sobol’

Pred uncertainty intervals , MCMC, 

multi-model analysis

FAST, Sobol’

Scaled local stats (PSS, etc.), DELSA

z/SDz, Pred uncertainty intervals

Scaled local stats (PPR)

11 Which existing and potential obs

are important to the preds? 
12 For multi-model analysis, which 

models are likely to produce 

accurate preds? 

Scaled local stats (OPR)

Analyze model fit and estimated 

parameters, AIC, AICc, BIC, KIC

Frugal methods Expensive methodsCommon questions

Risk Assessment
13 What risk is associated with a 

given decision strategy? 

Combine uncertainty analysis 

and scenario simulation. 

Smooth cost function.

Combine uncertainty analysis 

and scenario simulation. Cost 

function need not be smooth.



A strategy for the “Tower of Babel” 

1. Introduce typology to organize the diversity of 
model/risk analysis methods. 

Organize common concerns and applicable methods. 

2. Examine relation of methods through 
theoretical and empirical investigation
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Example: Uncertainty Evaluation
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A strategy for the “Tower of Babel” 

1. Introduce typology to organize the diversity of 

model/risk analysis methods. 

Organize common concerns and applicable methods. 

2. Examine relation of methods through 

theoretical and empirical investigation

3. Use comparable metrics and presentation of 

results even when different analysis methods 

are used
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Identify important parameters
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Our observation 2: 

“colossal” computational burdens

• Goliath-size computational demand  
– Sobol’ & MCMC often require 10,000++ model runs. 

– Impractical when runs take from seconds to months.

• Modeler choices
– too few model runs to obtain numerically stable results, 

or 

– oversimplified models merely to obtain short execution 
times for model/risk analysis methods (Tail wags dog)

• Transparency suffers 
– Most computationally expensive methods based on 

sampling. No closed form analytical equation -- difficult 
to determine properties. Further, the computational 
demands impedes replication of results.
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Number of model runs 

needed for analysis

Length of 

one 

forward 

model run

Few Many

Short

Long

Small

Moderate to 

Large

Small to 

moderate

Colossal

Our observation 2: 

“colossal” computational burdens

Most methods parallelizable, so not used as factor. 

Use relative terms so categories adapt to computer resources available.

Small � one analysis < few hours.

Evaluate alternative models, refined discretization, etc

Computer 

Burden
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Observations (Obs)
Cross Validation

Cross Validation

8 Which pars are important and 

unimportant to preds?
9 How certain are the preds? 

10 Which pars contribute most and 

least to pred uncertainty?

Parameters (Pars)Observations (Obs)

Predictions (Preds)Parameters (Pars)

Sensitivity and Uncertainty

Model Adequacy
Error-based weighting and  SOO 

or MAP 

Compare fit to a priori error 

analysis using sn
2, s(n-p)

2, RMSE, 

Nash-Sutcliffe, graphs

Intrinsic nonlinearity, DELSA

1 How can many data types with 

variable quality be included?
2 Is model misfit/overfit a problem?

Are prior knowledge and data 

subsets inconsistent?
3 How nonlinear is the problem?

MOO, Pareto curve

MOO, Pareto curve

DELSA, Explore objective function,

4  What pars can and cannot be 

estimated with the obs? 
5  Are any pars dominated by one 

obs and, thus, its error? 
6 How certain are the par values? 
7 Which obs are important and 

unimportant to pars? 

Scaled local stats  (CSS, ID, PCC, 

etc.), SVD, DoE,  MoM (OAT)

Scaled local stats (Leverage, 

DFBETAS)

Par uncertainty intervals

Scaled local stats (Leverage, 

Cook’s D)

DoE,  MoM (OAT), eFAST, Sobol’, 

RSA, CSE  

Cross Validation

Par uncertainty intervals3

Cross Validation

Predictions (Preds)

DELSA, FAST, Sobol’

Pred uncertainty intervals , MCMC, 

multi-model analysis

FAST, Sobol’

Scaled local stats (PSS, etc.), DELSA

z/SDz, Pred uncertainty intervals

Scaled local stats (PPR)

11 Which existing and potential obs

are important to the preds? 
12 For multi-model analysis, which 

models are likely to produce 

accurate preds? 

Scaled local stats (OPR)

Analyze model fit and estimated 

parameters, AIC, AICc, BIC, KIC

Frugal methods Expensive methodsCommon questions

Risk Assessment
13 What risk is associated with a 

given decision strategy? 

Combine uncertainty analysis 

and scenario simulation. 

Smooth cost function.

Combine uncertainty analysis 

and scenario simulation. Cost 

function need not be smooth.
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Number of model runs 

needed for analysis

Length of 

one 

forward 

model run

Few Many

Short

Long

Small

Moderate to 

Large

Small to 

moderate

Colossal

Our observation 2: 

“colossal” computational burdens

Most methods parallelizable, so not used as factor. 

Use relative terms so categories adapt to computer resources available.

Small � one analysis < few hours.

Evaluate alternative models, refined discretization, etc

Computer 

Burden



What makes run times long and 

requires many model runs?

• Numerical daemons (Kavetski Clark 2010 WRR)

• Are some models more irregular than the real 

world? 

16Kavetski and Kuczera 2007 WRR



How can the parameter space be 

explored?

• Sensitivity analysis – important and 

unimportant parameters

• Identify numerical

17



Dig deeper into 

DELSA for 

FUSE-016  

Sobol DELSA

TIMEDELAY, the most important parameter based on Sobol’, is only 

important for poorly fitting models. 

This is where the article ends.

DELSA sampling of first-order sensitivities [-]



Dig deeper into 

DELSA for 

FUSE-016  

Sobol DELSA

DELSA sampling of first-order sensitivities [-]

Are inconvenient global methods useful for these problems?

Are very convenient local methods useful for these problems? 

Use DELSA to explore the model and its simulated dynamics

Questions raised



Methods to alleviate 

“colossal” computational demands 

• Computationally “frugal” analysis methods (few runs)

– Frugal = small number of model executions

– Rely on local methods, linearization of nonlinear models, 

and/or Gaussian assumptions

– Example: Morris and DELSA for sensitivity analysis 

• Computationally “efficient” model (short run time)

– Eliminate “numerical daemons”

– Build surrogates of computationally demanding models

• Can afford many surrogate model executions

• Need accurate surrogates

• New method: Sparse grid collocation 20



Exploring Models  Based on the model, which head 

observations improve simulation of transport from beneath Yucca 

Mountain and the UGTA sites.
Existing head observations Potential head observations

Reduce effort for routine tasks so  new things can be done
Here, identify observations that, through the model, dominate 

predictions



Our Observations

A.   Tower of Babel

B.   “Colossal” computational burdens
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The strategy
• Unified strategy – possible?

– DOD has approximately 38,000 sites and invests up 

to $2 billion a year in cleanup activities.

– DOE has 90 out of 107 sites that have completed 

cleanup activities. Remediation of the remaining 

sites is expected to cost more than $300 billion and 

take 40 more years (DOE 2013). 

• Paul Black: Environmental remediation is site 

specific, but aspects of the risk assessment for a 

given site are often not site specific.

23



From a modeling perspective

The diagram can be used to

• Organize the current methods of model/risk analysis

• Develop new methods/frameworks of uncertainty 
quantification

24

System boundary B(t) with 

boundary conditions b(Θ)

Forcing u(Θ,t)

Initial condition 

x0(Θ)
Structure M(t) with 

characteristics 

m(Θ)

State variables x(t)

y(t)

A model is composed of seven different 

components: 

• System boundary (B), 

• Forcing (u), 

• Initial states (x0), 

• Structure (M), 

• Parameters (θ), 

• States (x), and 

• Outputs (y). 



A Comprehensive and Hierarchical Framework

Scenario S1 Scenario S2

Address

Scenario
Uncertainty

Model M1 Model M2

Parameter P1

Address

Model 

Uncertainty

Address

Parametric
Uncertainty

UQ(P2|M2,S1)

UQ(P,M|S1) UQ(P,M|S2)

UQ(P,M,S)

Quantify

Parametric
Uncertainty 

Quantify

Parametric and Model
Uncertainty

Quantify

Parametric, Model, and Scenario
Uncertainty

UQ(P1|M1,S1)

Same or Different 

Models and Model 
Parameters

Parameter P2
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Model uncertainty: why it matters and 

what to do about it (Draper)
• “In a typical application of the statistical paradigm, there's some quantity 

Δ about which I'm at least partially uncertain, 

• and I wish to quantify my uncertainty about Δ, for the purpose of 
– sharing this information with other people (inference) or 

– helping myself or others to make a choice in the face of this uncertainty 
(decision-making).

• Uncertainty quantification is usually based on a probability model M, 
which relates Δ to known quantities (such as data values D).”
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• Given a single model M

• Quantity of interest, Δ

due to parametric uncertainty of the model

• Predictions of Δ given observation D
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Model Uncertainty
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“To be completely honest, then, I have to acknowledge two 

sources of uncertainty: I'm uncertain about Δ, and I'm also 

uncertain about how to quantify my uncertainty about Δ.

This second source is model uncertainty.”

“M will in turn be based on assumptions and judgments on my part 

about how Δ and D are related, but I'm not always certain about the 

“right” assumptions and judgments to make.”

Meyer et al. (2007)
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• Each model alternative has some merit in reproducing aspects of the 

physical system, this merit being quantified by each model’s probability.

• The model probability is interpreted as a relative measure with respect to 

the other model alternatives considered.

• The individual model results are presented along with the model-average 

results and the model probabilities, a fully informed decision can be made.
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• Two scenarios

• The three models are 

the same under each 

scenario.

• The three models have 

different predictions 

under different 

scenarios.

Scenario 1 Scenario 2
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Scenario 

Averaging 

Approach
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Uncertainty Decomposition

Parametric uncertainty in θ
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• Empirical equations to 

predict sea-level rise 

given by SERDP

• Predicted sea-level rises 

agree with literature data.  



Impacts of SLR and storms on 

backshore position

• A single coastal model 

• Multiple scenarios of SLR

• Random storm parameters 

33

The PDFs become 
dramatically different 
in shape and data 
range, when 
simulation time 
increases. 

This manifests the 
impacts of SLR 
scenarios on 
predictive 
uncertainty.

Dai et al. (2014, J. Coastal Research)
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Total effect sensitivity index

For a single model and a single scenario
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Total effect sensitivity index

For multiple models and multiple scenarios
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Head Sensitivity Analysis: 

Individual models and individual scenarios 

• Parameter sensitivity is different for different models 

under different scenarios.

• Using a single model and a single scenario may lead to 

biased identification of important parameters.

Model 1

under

scenario 1

Model 1

under

scenario 2

Model 1

under

scenario 3

Model 2

under

scenario 1

Model 2

under

scenario 2

Model 2

under

scenario 3

67% 73% 76%
89% 92% 94%

33%
27% 24%

11% 9% 7%

Recharge Hydraulic conductivity

iT
S
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Model 1

under

scenario 3

Model 2

under

scenario 3

Model

averaging

under

scenario 3

76%
94%

80%

24%
7% 21%

Recharge Hydraulic conductivity

Model 1

under

scenario 1

Model 1

under

scenario 2

Model 1

under

scenario 3

Model 2

under

scenario 1

Model 2

under

scenario 2

Model 2

under

scenario 3

67% 73% 76%
89% 92% 94%

33%
27% 24%

11% 9% 7%

Recharge Hydraulic conductivity

• Sensitivity for multiple 

models under a single 

scenario.
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Model 1

under

scenario 3

Model 2

under

scenario 3

Model

averaging

under

scenario 3

76%
94%

80%

24%
7% 21%

Recharge Hydraulic conductivity

Model

averaging

under

scenario 1

Model

averaging

under

scenario 2

Model

averaging

under

scenario 3

Model and

scenario

averaging

76% 78% 80% 77%

24% 23% 21% 23%

Recharge Hydraulic conductivity

Sensitivity for multiple 

models under a single 

scenario

Sensitivity for multiple 

models under multiple 

scenarios

iT
S

M
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MS



How methods relate?

• Different 

methods give 

similar results.

• Select the 

methods that 

are most 

computationally 

efficient. 
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Observations (Obs)
Cross Validation

Cross Validation

8 Which pars are important and 

unimportant to preds?
9 How certain are the preds? 

10 Which pars contribute most and 

least to pred uncertainty?

Parameters (Pars)Observations (Obs)

Predictions (Preds)Parameters (Pars)

Sensitivity and Uncertainty

Model Adequacy
Error-based weighting and  SOO 

or MAP 

Compare fit to a priori error 

analysis using sn
2, s(n-p)

2, RMSE, 

Nash-Sutcliffe, graphs

Intrinsic nonlinearity, DELSA

1 How can many data types with 

variable quality be included?
2 Is model misfit/overfit a problem?

Are prior knowledge and data 

subsets inconsistent?
3 How nonlinear is the problem?

MOO, Pareto curve

MOO, Pareto curve

DELSA, Explore objective function,

4  What pars can and cannot be 

estimated with the obs? 
5  Are any pars dominated by one 

obs and, thus, its error? 
6 How certain are the par values? 
7 Which obs are important and 

unimportant to pars? 

Scaled local stats  (CSS, ID, PCC, 

etc.), SVD, DoE,  MoM (OAT)

Scaled local stats (Leverage, 

DFBETAS)

Par uncertainty intervals

Scaled local stats (Leverage, 

Cook’s D)

DoE,  MoM (OAT), eFAST, Sobol’, 

RSA, CSE  

Cross Validation

Par uncertainty intervals3

Cross Validation

Predictions (Preds)

DELSA, FAST, Sobol’

Pred uncertainty intervals , MCMC, 

multi-model analysis

FAST, Sobol’

Scaled local stats (PSS, etc.), DELSA

z/SDz, Pred uncertainty intervals

Scaled local stats (PPR)

11 Which existing and potential obs

are important to the preds? 
12 For multi-model analysis, which 

models are likely to produce 

accurate preds? 

Scaled local stats (OPR)

Analyze model fit and estimated 

parameters, AIC, AICc, BIC, KIC

Frugal methods Expensive methodsCommon questions

Risk Assessment
13 What risk is associated with a 

given decision strategy? 

Combine uncertainty analysis 

and scenario simulation. 

Smooth cost function.

Combine uncertainty analysis 

and scenario simulation. Cost 

function need not be smooth.



Bayesian vs. frequentist methods

• Regression methods
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• Regression methods

Lu et al. (2012, Water Resources Research)
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Credible vs. confidence intervals

• The credible and confidence 
intervals are similar.

• Model runs for all three models 
(HO, 3Z, INT) are 166, 2,309, and 
1.5 million, respectively.
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When the results are different
Surface complexation model
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2+ +

1 2 2 1 2S OH+UO +H O=S OUO OH+2H

2+ +

2 2 2 2 2S OH+UO +H O=S OUO OH+2H

2+ + +

2 2 2 2S OH+UO =S OUO +H

logK1

logK2

logK3

Density functions of 

the four model 

parameters: 

Blue: results of a 

regression method with 

Gaussian likelihood 

function

Grey: results of a 

Bayesian method with 

Gaussian likelihood 

function

Red: results of Bayesian 

method with non-

Gaussian likelihood 

function  

Shi et al. (2014, 

Water Resources Research)



Credible vs. confidence intervals 
• Credible interval and 

confidence intervals 

are similar when 

Gaussian likelihood is 

used.

• The credible interval 

with non-Gaussian 

likelihood is superior.
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Shi et al. (2014, 

Water Resources Research)



Why are the results different?

• The reaction model is highly nonlinear

• The response surface of SSWR (sum of squared 

weighted residuals) is extremely irregular. 
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SSWR -log10SSWR



Ad-hoc comparable metrics
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Yes

Yes

Model has 

major 

unrealistic 

process-model 

nonlinearities 

produced by 

numerical 

artifacts?

Yes

Useful  computationally 

demanding  results

Useful computationally 

frugal or demanding 

results

No

Model 

performance 

and error 

model are 

adequately 

consistent 

with frugal 

methods?*

No

Compromised results 

regardless of the 

method used

Model 

execution time 

and computer 

resources 

allow enough 

model runs?

No

No

Yes

Adjust numerical methods, model 

construction, or both to obtain good 

model performance?

Start

*Yes: Simulated results vary smoothly as parameter values change for parameters of 

interest. If multiple local minima exist one can be identified as the realistic solution. 

The error model is unimodal.  These characteristics are determined based on knowledge

of model theory and numerical methods, and easily conducted tests.



Computational Efficient Methods

What if tens or even hundreds of thousands of 
model runs are needed?

• Build a surrogate model whose execution time is 
negligible
– Polynomial chaos expansion

– Sparse grid collocation

– Reduced order modeling

• Run the surrogate model at least as possible 
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Sparse Grid Collocation (SGC)

Sparse grid interpolation

47

1

1

1

,

1

1 1 1

1
( , , ) ( ) ( 1) ( , ) ( )

lNl

N n

N

NN N
L lL N

N j j j n

l L j j n

N

L l

θθ

θ

θ θ

θ

θ
η θ θ η η θ θ φ θ−

≤ = = =

− 
≈ = −  

− 
∑ ∑ ∑ ∏L L LIIII

,

1

( ) ( ) ( )
sN

L N

i i

i

d dθη η ω η
Γ Γ

=

≈ = ∑∫ ∫θ θ θ θIIII

Sparse grid integration

polynomials



MCMC with Use SGC Surrogate 
Bayes’ theorem for MCMC simulation 
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The idea is simple, but the implementation is NOT.



Response Surface of log Likelihood
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• Complicated response surface 

with multiple peaks and valleys.

• It is very difficult to build a 

surrogate for such a surface.

( ) 12ln , ( ( )) ( ( ))T

Dp M
−− ∝ − Σ −D θ D f θ D f θ

Zhang et al. (2013)



Adaptive Sparse-Grid 

High-order Stochastic Collocation

50
Zhang et al. (2013)



Evaluation of Accuracy and Efficiency
Accuracy

The probability densities 
obtained using SGC are 
almost identical to those 
of the original model. 

• Efficiency

• 60,000 model runs needed 
for the original MCMC 

• 9,647 models runs needed 
for building the surrogate

51

Zhang et al. (2013, )



Computational Efficient Methods

Run the surrogate model at least as possible 
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Computational Efficiency
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NMCS NME NSGP Level NME

For hydraulic head at x = 6,000 m

50 200 0.160 0.640 9 1 18 0.325 0.791

100 400 0.240 0.878 25 2 50 0.268 0.735

1,000 4,000 0.265 0.767 49 3 98 0.268 0.735

10,000 40,000 0.251 0.732

100,000 400,000 0.269 0.735

1,000,000 4,000,000 0.268 0.735

For ethene concentration at x = 6,000 m and on 1,000 days

50 300 0.700 0.052 21 1 84 0.900 -0.047

100 600 1.105 0.043 145 2 590 0.947 0.035

1,000 6,000 0.849 0.039 651 3 2,898 0.951 0.040

10,000 60,000 0.959 0.043 2,277 4 11,880 0.952 0.042

100,000 600,000 0.960 0.043

1,000,000 6,000,000 0.952 0.042

KT
S

RT
S

KT
S

RT
S



Reasons for the efficiency

Head and concentrations are smooth functions of model parameters.
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Conclusion
• We observed two problems in model/risk analysis: (1) the 

tower of Babel and (2) “colossal” computational burdens.

• We proposed a strategy that uses a three-pronged line of 
attack to
– Organize the diverse methods from a modeling perspective

– Analyze similarity and dissimilarity between the methods

– Evaluate computationally fugal and efficient methods

• Using the methods of model and scenario averaging, we 
developed a comprehensive and hierarchical Bayesian 
framework to consider the uncertainties in model scenarios, 
structures, and parameters. 

• Using the sparse grid collocation methods greatly improves 
computational efficiency for uncertainty quantification and 
risk analysis.
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Test of Transport Prediction
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