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Overview 
 
!  Optimal power flow 
!  Polar vs. Cartesian coordinate system 
!  Global optimizer 
!  Research idea 
!  Our proposed method 
!  Simulation result 
!  Conclusions 
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Optimal Power Flow I 
 
!  Finds an optimal solution while satisfying 

!  Kirchhoff’s laws 
!  Operation constraints 
!  Economic, policy, and/or environmental constraints  

!  Plays a key role in operation and planning of 
!  Smart grid technologies 
!  Renewable energy integration 

!  Nonlinear and nonconvex " difficult to solve 
!  No guarantee to find a solution 
!  Heuristic search aiming for a local solution 
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Optimal Power Flow II 
 
OPF in the polar coordinate system 
!  Control variables 

!  Voltage magnitude (E) and angle (!) 
!  Real (p) and reactive (q) power generation 

!  MATPOWER finds a local solution 
!  Often observes E ~ 1.0 and –!/3 " ! " !/3 
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Polar vs. Cartesian Coordinate System I 
 
!  Power balance equations are 

 sinusoidal function with ! 
!  3-bus system: 

!  Bus 1: reference bus 
!  Bus 2: PV bus 

!  Power flow solutions at various |v| and  
 power generation at Bus 2 

!  Power generation is a function of  
 |v| and ! at Bus 2 

!  |v| and ! are independent 
!  Efficient search in the space of 

|v| and ! is possible!
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Optimal Power Flow III 
 
OPF in the Cartesian coordinate system 
!  Control variables 

!  Real (x) and imaginary (y) components of voltages  
!  Real (p) and reactive (q) power generation 

!  E and g are quadratic functions in x and y 
!  flow is a quartet function in x and y 
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Polar vs. Cartesian Coordinate System II 
 
!  Power balance equations are quadratic in x and y 
!  x and y are dependent 
!  Saddle points? 
!  Different strategy  

 for search 
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Optimal Power Flow IV 
 
!  Semi-definite programming (SDP) relaxes non-convexity 

!  W = [xT yT]T[xT yT] 
!  Rank(W) = 1 is relaxed with W # 0 
!  If solution W is rank-1 " global solution 
!  If not 

!  In other application areas W " #2qqT 

!  In power systems, no physically meaningful solution 
!  SDP yields a lower bound of all local minimizers 

Efficient AC Optimal Power Flow & Global Optimizer Solutions   7 

min
W ,p,q

Costp
i pi( )+Costqi qi( )!" #$

i=1

Ng

%

s.t.
pg
i & pd

i = Tr ' p
i W( ); qgi & qdi = Tr 'q

iW( );
Ei

2 ( Tr )iW( ) ( Ei

2
; p ( p ( p; q ( q ( q; W!0

*
+
,

-,
&

& flowl

2
Tr YlW( ) Tr !YlW( )

Tr YlW( ) &1 0

Tr !YlW( ) 0 &1

!

"

.

.

.

.

.

#

$

/
/
/
/
/

! 0



Global Optimizer I 
 
Algorithms seeking for the global optimizer 
!  Stochastic methods 

!  Simulated annealing 
!  Direct Monte-Carlo sampling 
!  Stochastic tunneling 

!  Deterministic methods 
!  Cutting plane method, and 
!  Branch-and-bound method 

!  Our goal is to guarantee to find the global optimizer if exists 
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Global Optimizer II 
 
Branch-and-reduce (BR) 
!  BARON is a widely used commercial software package to find 

the global solution 
!  OPF in the polar coordinate system cannot be solved with 

BARON because it does not take sinusoidal functions 
!  Convexification through a linear approximation 
!  Rule for selecting supporting lines  
      in sandwich algorithm 

!  Maximum error rule 
!  Two sub-regions 
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M. Tawarmalan and N. Sahinidis, 
“Global optimization of mixed-integer 
nonlinear programs: A theoretical and 
computational study”, Mathematical 
Programming, vol. 99, no. 3, pp.563 
-591, 2004. 
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Global Optimizer III 
 
BARON 
!  Flow chart 
!  Up to 9-bus system 

!  Time limit 
!  Linear relaxations 
!  Used for lower bound 
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From: Assembled by T. Lipp, “BARON: 
Branch and reduce optimization 
navigator”, Available at http://
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Global Optimizer IV 
 
Branch-and-bound method (BB) 
!  At a given SDP solution, divide the feasible region with the 

control variables 
!  Within the feasible region, the global solution is sandwiched 

!  Upper bound found by a local minimizer 
!  Lower bound found by a convexified OPF 
!  If upper bound and lower bound are close enough, the 

global solution in the region is found 
!  Search for all the regions and find the best solution  

 " the global optimizer 
!  Observation: 

!  BB finds the global optimizer 
!  Finding the global solution #" Searching for the region that 

the global solution exists 
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Global Optimizer V 
 
MITSUBISHI group implements BB for OPF 

!  U set by CONOPT and L set by SDP 
!  Compare two L’s " keeps track of a “better” SDP 
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only remains to resolve the contribution in the dual functions
due to x in (3) and due to W in (6). For this consider the
conditions under which infx xTA(ξ)x is finite-valued. This
occurs only when A(ξ) � 0. It is easily seen that the same
condition is required for the term infW�0 Tr(A(ξ),W) to
be finite valued. This establishes that the Lagrangian dual of
the OPF (4) is equivalent to the dual of the SDP relaxation
(7). The equivalence is far more general and can be shown
to hold for any QCQP [24].

The optimal value of the Lagrangian dual yields a lower
bound on the original problem due to weak duality for the
nonconvex OPF. The optimal value of the SDP relaxation
likewise yields a lower bound on the original problem, even
if the rank ≤ 2 condition fails. So we have,

LD = SDP = dual SDP ≤ OPF (2)

and the optimal Lagrangian multipliers corresponding to the
Lagrangian dual are nothing but the optimal dual vector
for the SDP. However, computationally they are not equiv-
alent. Finding the optimal Lagrangian multipliers might be
a challenge in practice as the Lagrangian dual of the OPF
is non-smooth, and the convergence behavior of nonsmooth
algorithms tend to be slower compared to their smooth
counterparts [25]. On the other hand, the SDP relaxation is
a smooth problem that can be solved in polynomial time by
interior point algorithms [26].

III. GLOBAL OPTIMIZATION BY BRANCH AND BOUND

The branch and bound method is a general purpose global
optimization technique for a wide class of nonconvex prob-
lems. It solves the problem P by constructing a convex
relaxation R, that is easy to solve and provides a lower
bound (L) on the optimal objective function value (Figure
1a). The upper bound (U ) can be arrived at by using local
minimization, which also yields a feasible solution. If U −L

is sufficiently small, the procedure terminates with the current
upper bounding solution. Otherwise, the feasible region is
recursively partitioned, and the procedure is repeated (Figure
1b) until the gap U − L is sufficiently small. Nodes are
fathomed if the lower bound L is greater than the current
best upper bound (Figure 1c). We refer the interested reader
to [27] for additional information.
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Fig. 1: Branch and Bound Schematic

In this work, the upper bounding problem is done through
CONOPT [28], a local nonlinear programming (NLP) solver.
The lower bounding is done through either the SDP relax-
ation or the Lagrangian dual, both of which are equivalent

but could differ in computational performance. If there is
an optimality gap, the feasible region is partitioned into
two sub-regions, over which the procedure is repeated. The
partitioning is done as follows. At the root node 0 of the
branch and bound tree, define

B0 :=
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Fig. 2: Domain subdivision in the B & B algorithm.

Subproblems R1 and R2 are created by either rectangular
bisection on PG

i or QG
i , or by radial bisection on the voltage

magnitudes (e2i + f2
i ) as shown in Figure 2. The newly

generated bounds B̄,
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replace the existing bounds in the upper bounding problem
OPF and in the Lagrangian dual & SDP relaxations.

A. Lagrangian dual based branch and bound

The minimization of the Lagrangian in (3) is tractable
because it can be decomposed into individual problems
for the generators, line flows and voltages as follows. The
decomposition for the generator and voltage subproblems
follows along the lines of [23]. The line flow subproblem
however represents an extension of the work in [23].
Generator subproblems: (LD1
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It is easy to see (8) is convex and can be solved analytically
for each generation variable.
Line flow subproblems: (LD2

ij) ∀(i, j) ∈ L

min
Pij ,Qij

λijPij + γijQij

s.t. Pij ≤ Pmax
ij , (Pij)2 + (Qij)2 ≤ (Smax

ij )2
(9)

A. Gopalakrishnan, et. al., “Global 
optimization of optimal power flow using 
a branch and bound algorithm”, in 
Communication, Control, and 
Computing, Allerton, pp. 609–616, 2012 



Global Optimizer VI 
 
MITSUBISHI group implements BB for OPF 
!  Simple bisection of the feasible region 

!  Voltage magnitude: radial bisections 
!  Real power generation: rectangular bisections 
!  Reactive power generation: rectangular bisections 
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only remains to resolve the contribution in the dual functions
due to x in (3) and due to W in (6). For this consider the
conditions under which infx xTA(ξ)x is finite-valued. This
occurs only when A(ξ) � 0. It is easily seen that the same
condition is required for the term infW�0 Tr(A(ξ),W) to
be finite valued. This establishes that the Lagrangian dual of
the OPF (4) is equivalent to the dual of the SDP relaxation
(7). The equivalence is far more general and can be shown
to hold for any QCQP [24].

The optimal value of the Lagrangian dual yields a lower
bound on the original problem due to weak duality for the
nonconvex OPF. The optimal value of the SDP relaxation
likewise yields a lower bound on the original problem, even
if the rank ≤ 2 condition fails. So we have,

LD = SDP = dual SDP ≤ OPF (2)

and the optimal Lagrangian multipliers corresponding to the
Lagrangian dual are nothing but the optimal dual vector
for the SDP. However, computationally they are not equiv-
alent. Finding the optimal Lagrangian multipliers might be
a challenge in practice as the Lagrangian dual of the OPF
is non-smooth, and the convergence behavior of nonsmooth
algorithms tend to be slower compared to their smooth
counterparts [25]. On the other hand, the SDP relaxation is
a smooth problem that can be solved in polynomial time by
interior point algorithms [26].

III. GLOBAL OPTIMIZATION BY BRANCH AND BOUND

The branch and bound method is a general purpose global
optimization technique for a wide class of nonconvex prob-
lems. It solves the problem P by constructing a convex
relaxation R, that is easy to solve and provides a lower
bound (L) on the optimal objective function value (Figure
1a). The upper bound (U ) can be arrived at by using local
minimization, which also yields a feasible solution. If U −L

is sufficiently small, the procedure terminates with the current
upper bounding solution. Otherwise, the feasible region is
recursively partitioned, and the procedure is repeated (Figure
1b) until the gap U − L is sufficiently small. Nodes are
fathomed if the lower bound L is greater than the current
best upper bound (Figure 1c). We refer the interested reader
to [27] for additional information.
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Fig. 1: Branch and Bound Schematic

In this work, the upper bounding problem is done through
CONOPT [28], a local nonlinear programming (NLP) solver.
The lower bounding is done through either the SDP relax-
ation or the Lagrangian dual, both of which are equivalent

but could differ in computational performance. If there is
an optimality gap, the feasible region is partitioned into
two sub-regions, over which the procedure is repeated. The
partitioning is done as follows. At the root node 0 of the
branch and bound tree, define
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Subproblems R1 and R2 are created by either rectangular
bisection on PG

i or QG
i , or by radial bisection on the voltage

magnitudes (e2i + f2
i ) as shown in Figure 2. The newly

generated bounds B̄,
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replace the existing bounds in the upper bounding problem
OPF and in the Lagrangian dual & SDP relaxations.

A. Lagrangian dual based branch and bound

The minimization of the Lagrangian in (3) is tractable
because it can be decomposed into individual problems
for the generators, line flows and voltages as follows. The
decomposition for the generator and voltage subproblems
follows along the lines of [23]. The line flow subproblem
however represents an extension of the work in [23].
Generator subproblems: (LD1
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It is easy to see (8) is convex and can be solved analytically
for each generation variable.
Line flow subproblems: (LD2

ij) ∀(i, j) ∈ L

min
Pij ,Qij

λijPij + γijQij

s.t. Pij ≤ Pmax
ij , (Pij)2 + (Qij)2 ≤ (Smax

ij )2
(9)

A. Gopalakrishnan, et. al., “Global 
optimization of optimal power flow using 
a branch and bound algorithm”, in 
Communication, Control, and 
Computing, Allerton, pp. 609–616, 2012 



Global Optimizer VII 
 
!  Branch-and-bound method 

!  CONOPT solution is needed at every nodes 
!  Initial CONOPT solution is the global optimum 
!  3-bus example: $obj = 10-3 

!  Branch-and-reduce method 
!  Does not reflect  

 the complexity of OPF 
!  Slow convergence at  

 $obj = 10-2 
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A. Gopalakrishnan, A. U. Raghunathan, D. 
Nikovski, and L. T. Biegler, “Global optimization of 
optimal power flow using a branch & bound 
algorithm,” in Communication, Control, and 
Computing (Allerton), 2012 50th Annual Allerton 
Conference on. IEEE, 2012, pp. 609–616. 



Global Optimizer VIII 
 
MITSUBISHI group implements BB for OPF 
!  CONOPT and SDP to find upper and lower bounds 

!  Even if SDP finds a rank-1 solution, the gap between two 
bounds can be nonzero because CONOPT find a local 
solution " needs to check feasibility of SDP solution 

!  SDP solution is not exploited 
!  Regardless SDP solution, bisect |v|, p, and q 

!  No bisection for voltage angle 
!  Objective function is convex on 

!  Real power generation, and reactive power generation 
 " p- and q- bisection may not be efficient 
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Research Idea I 
 
Divide-and-conquer (DC) 

!  It starts with a feasible solution (so-far-the-best, SFTB) 
!  Based on a given SDP solution, it divides the feasible region 
!  Within the feasible region, SDP finds a lower bound 

!  If the lower bound # SFTB, not worthwhile to explore  
 " terminate the node 

!  If the lower bound < SFTB 
!  Rank-1 (feasible), update SFTB 
!  Multiple rank solution, prune the node 

!  If no nodes to explore, terminate the process and claim 
SFTB is the global solution 

Efficient AC Optimal Power Flow & Global Optimizer Solutions   16 



Research Idea II 
 
Angular cut 

!  BB only considers the bisection of voltage magnitudes 
!  SDP finds a solution (red dot) 

!  DC makes the circular cut and 
 angular cut through the red dot 

!  Efficient way to narrow down the region  
!  Exploit the SDP solution  

 " No revisit to infeasible W 
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Research Idea III 
 
Meaning of multiple rank solution 

!  Primary eigenvector q1 is an approximation of W 
!  Secondary eigenvector can be the maximum deviation that a 

“true” voltage exists from the primary eigenvector 
!  Largest element in the secondary eigenvector indicates the 

direction of the maximum deviation  
!  W – #1

2q1q1
T " #2

2q2q2
T: rank-1 approximation 
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Research Idea IV 
 
!  Need for a sub-optimization problem 

!  SDP solution may not be rank-1 
!  Eigenvalue decomposition of W " #2qqT, but #q is not inside 

the feasible region 
!  We need an indicator (red dot) to divide the feasible region 

!  Sub-optimization problem 
!  Need a vector v to approximate W 
!  The vector must be inside the feasible region 
!  Looking for a local solution 

!  No need for EVD 
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Our Proposed Method I 
 
!  Checking the feasibility of the SDP solution 

!  Eigenvalue decomposition in %(N3) 
!  &2

2/&1
2 ' 0 " when to ignore the second eigenvalue? 

!  Solve the sub-optimization problem " v 
!  Power balance equations 
!  Inequality constraints 
!  If v is infeasible, check W – vvT 

!  Comparison between the solution from SDP and SFTB 
!  Terminate the node that is not worthwhile to explore 
!  Terminate the node if SDP solution is feasible 
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Our Proposed Method II 
 
!  Two thresholds due to numerical errors 

!  Checking feasibility of the SDP solution 
!  Comparison between SDP solution and SFTB 

!  If SDP finds a multiple rank solution and the relative 
difference " $obj, then terminate the node 

!  MITSUBISHI group choose $obj = 10-3 

!  Penalized SDP relaxation: extra payment to q at $  
!  SDP solution becomes rank-1 
!  System cost increases ~2(10-4 
!  As $ increases, wants to reduce 

 q generation " low voltage sol. 
!  MATPOWER also find the same sol. 
!  Low-rank sol. costs $! 

Efficient AC Optimal Power Flow & Global Optimizer Solutions   21 

R. Madani, et. al. “Convex relaxation for optimal power flow 
problem: Mesh networks”, In Proc. Asilomar Conference on 
Signals, Systems and Computers, November 2013. 



Our Proposed Method III 
 
Divide-and-conquer 
!  MATPOWER " SFTB0 
!  Criteria to terminate a node 

!  Feasible SDP solution 
!  SDP # SFTB ( (1-$obj) 

!  Criteria to check feasibility 
!  v from the sub-problem 
!  ||vvT – W||F " $F 
!  Violation of constraints " $vio 

!  Breadth first search 
!  Active node " prune 
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Our Proposed Method IV 
 
Divide-and-conquer 
!  Criteria to terminate a node 

!  Feasible SDP solution 
!  SDP # SFTB ( (1-$obj) 

!  Criteria to check feasibility 
!  v from the sub-problem 
!  ||vvT – W||F " $F 
!  Mismatch from constraints " $mis 
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Simulation Environment 
 
!  IEEE 14-bus system  

!  5 generators 
!  20 lines 

!  MATPOWER finds 
!  System cost: $3091.4 # initial 

SFTB 
!  DC OPF 

!  System cost: $3048.8 
!  SDP finds a rank-3 solution 

!  Physically not meaningful 
!  System cost: $3077.1 # lower 

bound for the global solution 
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MATPOWER Solution 
 
!  System cost = $3091.4/h 
!  Real power loss = 2.739MW 

!  Violation 

 
     where 
 
!  ||%||2 = 1.5(10-8 
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DC OPF Solution 
 
!  System cost = $3048.8/h 
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SDP Solution 
 
!  System cost = $3077.1/h ($3091.4/h from MATPOWER) 
!  Rank(W) = 3, ||%||2 = 0.12 
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Performance of Our Algorithm I 
 
!  DC method 

!  Early termination based on the quality of multiple rank sol. 
!  Visited 20,000 nodes to find the global solution 
!  ||%||2 = 2.3(10-6 (0.12 for SDP) 
!  $obj = 3(10-4 (10-3 for BB) 

!  Problems observed 
!  High cost of SDP  

 for a large system 
!  Sub-optimization problem: 

 most time consuming  
!  Many nodes to visit 
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Performance of Our Algorithm II 
 
Divide-and-conquer method 
!  System cost in $/h 

!  This study  = 3081.0 
!  MATPOWER  = 3091.4 
!  SDP   = 3077.1 

!  Lowest voltage magnitude 
!  This study  = 0.983 
!  MATPOWER  = 0.958 
!  SDP   = 0.972 

!  Real power loss in MW 
!  This study  = 2.309 
!  MATPOWER  = 2.739 
!  SDP   = 2.223 
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Conclusions 
 
!  Our DC finds the global solution in an efficient way by 

!  Dividing regions with voltage cut and angular cut 
!  Finding the ideal place to prune using the sub-optimization 

problem 
!  Terminating a node efficiently 

!  Issues identified with high computation cost regarding 
!  Sub-optimization problem 
!  SDP with a large system 
!  Many nodes to visit 

Efficient AC Optimal Power Flow & Global Optimizer Solutions   30 


