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Objective

Development of a solution for SCUC that will be

m Flexible: able to include uncertain renewable resources in a
realistic way, integrate with other tools

m Robust: provide optimal (or e-optimal) solutions

m Scalable: applicable to reasonably-sized systems in
practical computation time
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Objective

Development of a solution for SCUC that will be

m Flexible: able to include uncertain renewable resources in a
realistic way, integrate with other tools

m Robust: provide optimal (or e-optimal) solutions

m Scalable: applicable to reasonably-sized systems in
practical computation time

Combination of formulation and algorithm implementation
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Background

In 2013, we proposed to investigate chance-constrained
formulations that will

m ease the requirement for perfectly binding constraints,
m require constraints to be met with some large probability

m ensure scalability through separation of stochastic
complezity and system complexity
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Background

In 2013, we proposed to investigate chance-constrained
formulations that will

m ease the requirement for perfectly binding constraints,
m require constraints to be met with some large probability

m ensure scalability through separation of stochastic
complezity and system complexity

Replicating the reliability requirements of the power system
operator
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Goals

These objectives led to two primary goals previously described:
Use modestly-sized test cases, to filter approach to most
promising
Investigate methods for reduction of scenario sets and
approximation of excluded scenarios
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Goals

These objectives led to two primary goals previously described:

Use modestly-sized test cases, to filter approach to most
promising — Gabriela Martinez

Investigate methods for reduction of scenario sets and
approximation of excluded scenarios— Laura Tupper
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Stochastic Models
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Stochastic Models

Chance-constrained UC Models
m Quantile-region MIP approximation
m Quantile-based Relaxation
Stochastic Two-stage Models

m Risk-neutral two-stage UC Model (Expected recourse
actions)

m Risk-averse two-stage UC Model (Conditional value-at-risk
recourse actions)

Goals: formulate numerically tractable stochastic models based
on data — scenarios that capture statistical properties of
renewable generation, and possibly load
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Chance-constrained Optimization

Introduction

The general form of the optimization model considered:

m Cg total cost of thermal-generation

L Pé total thermal power generation at time ¢
m L! total load
m P! total renewable generation at time ¢
m 7" scheduling horizon
min Cg(Pg),
st:PL>L!—-PLt=1,....T
Pg € Cq.

Set of deterministic decisions C¢ (operational constraints of
thermal units). L — P, € RT is a random vector.
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Chance-constrained Model

Introduction

The general form of the optimization model considered:

m Cg total cost of thermal-generation

m Pl total thermal power generation at time ¢
m L! total load
m P! total renewable generation at time ¢
m T scheduling horizon
min Cg(Pg),
stP(PL>L—PLt=1,....T) >~
Pg € Cq.

Distribution of data L — P,. is represented with scenarios.
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Chance-constrained Model

Introduction

The general form of the optimization model considered:

Cga total cost of thermal-generation

P/, total thermal power generation at time ¢
L! total load

P! total renewable generation at time ¢

T scheduling horizon

a

/ L-P,

_CERTS R :

(Pa)

min Cg(Pg),
st:Fy_p, (Pg)>m
Pg € Cq.




Chance-constrained Model

Introduction

The general form of the optimization model considered The
general form of the optimization model considered:

m Cg total cost of thermal-generation

m P}, total thermal power generation at time ¢
m L' total load
m P! total renewable generation at time ¢
m T scheduling horizon
10
min Cg(Pg), E FL—Pr(Z7 /
st:Pa >z 7r
F_p.(2)>7 i
Ps € Cq. E
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Chance-constrained Model

Introduction

The general form of the optimization model considered The
general form of the optimization model considered:

Cg¢ total cost of thermal-generation

Pé total thermal power generation at time ¢
L! total load

P! total renewable generation at time ¢

T scheduling horizon
min Cg(Pg),

st:Pg >z
z € Zy
P € Cq.
Stochastic-Feasible Set: Z, := {z ¢ RT : P(L — P, < 2) > 7}.
Difficulty: Z, — handle unknown distribution, and numerical
CEI{Iiagtability.




Chance-constrained Model

Introduction

The general form of the optimization model considered The
general form of the optimization model considered:

Cg¢ total cost of thermal-generation

Pé total thermal power generation at time ¢
L! total load

P! total renewable generation at time ¢

T scheduling horizon
min Ce(Pg),
st:Pg >z
z € Zy
P € Cq.
Stochastic-Feasible Set: Z, := {z ¢ RT : P(L — P, < 2) > 7}.
Difficulty: Z, — handle unknown distribution, and numerical

CE Iiagtability. Approximate Z, based on theoretical results abou
TS Structure




Geometry

m Structure of Z; depends on the distribution of L — P,
m In general, it is a is non-convex set, Z, = U{v; + Rz}
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Geometry

m Structure of Z; depends on the distribution of L — P,
m In general, it is a is non-convex set, Z, = U{v; + Rz}
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m Structure of Z; depends on the distribution of L — P,
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Geometry

m Structure of Z; depends on the distribution of L — P,
m In general, it is a is non-convex set, Z, = U{v; + R?_}
m T =1,
Z.={2eR:PL-P,<z2)>n}={z=v,+ Ry}

7
Ur TY
g, T
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Geometry

m Structure of Z; depends on the distribution of L — P,
m In general, it is a is non-convex set, Z, = U{v; + Rz}
m If T > 1, more combinations to consider to find the

quantile-vectors v
Example, T = 2: L — P, = (L' — P, L% — P?)
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Geometry

m Structure of Z; depends on the distribution of L — P,
m In general, it is a is non-convex set, Z, = U{v; + Rz}
m If T > 1, more combinations to consider to find the

quantile-vectors v
Example, T = 2: L — P, = (L' — P, L% — P?)

FL—PT(Z) Z ™

_CERTS vF Uy



Geometry

m Structure of Z; depends on the distribution of L — P,
m In general, it is a is non-convex set, Z, = U{v; + Rz}
m If T > 1, more combinations to consider to find the

quantile-vectors v
Example, T = 2: L — P, = (L' — P, L% — P?)

FL—PT(Z) Z ™

vy = (vl v2)
FLI,pi(U#) >
FLQ,Pa(l)g) Z ™
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Geometry

General properties

FL,pT (Z) Z s

H Bounded
Vr < 2,07 S0

B Extreme Points
Frop, (v;) >m

U1 = (’U%,U;ﬁ)

'U7;- V4

vs = (vg,0%)

* finite realizations
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Optimization problem

min Cq(Pg),
st:Po > 2z
z € Z,
Pg € Cq.
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Optimization problem

min Cq(Pg),
st:Po > 2z
z € Z,
Pg € Cq.

Optimal solution: z = vy.
Convexification z = Zgzl AL Uk

~CERIS




Optimization Problem

min Cg(Pg),
st:Pg >z
z € Z,
Pg € Cg.
Optimal solution: z = v.

Convexification z = Zle ALUk.
Observation: v; unknown
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Optimization Problem

min Cg(Pg),
st:Pg >z
z € Z,
Pg € Cq.
Optimal solution: z = v.
Convexification z = Zle Ak Uk.
Observation: v; unknown
Approximate red region with a
sample and estimate v, v;
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Optimization Problem

Approximation

min Cq(Pg),
st:Pg >z
z € Hy
Pq € Cg.

H, data-driven approximation
of Z,.

~CERIS



Quantile-based set H,

Fort=1,...,T,let Vi = L' —P!. Let Vq,..., Vs be a sample
of V.

m Ordered sample
VigsVig << Vi)

m Estimate bound: %

m Estimate coordinate: 63




Quantile-based set H,

Fort=1,...,T,let Vi = L' —P!. Let Vq,..., Vs be a sample
of V.

Ordered sample
VigsVig << Vi)

Estimate bound: ﬁﬁr
Estimate coordinate: 63

Simple estimator:
k = [7S], Vi (problem:
biased)




Quantile-based set H,

Fort=1,...,T,let Vi = L' —P!. Let Vq,..., Vs be a sample
of V.

k-th section m Ordered sample

Vip = Vg = = Vg

Vi N Vis)

m Estimate bound: %
Sample: Vixs7)

. : m Estimate coordinate: oL
Sample\section: ‘/[l’:_n(siA\rﬂ] T

. 1K . m Jackknife estimator
Jackknife: Vijs7 - £2250,, V[?W(Sﬂ\rm
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Quantile-based set H,

Fort=1,...,T,let Vi = L' —P!. Let Vq,..., Vs be a sample
of V.

m Spacingi=1,...,5—1

S=KN
k-th section
sVi = Vi) — Vi),
‘/[1] N V'[S] k= argmaxiz[ﬁs“_i_ls‘/i.

wS|1+k+1
Sample: V“'.,rs]] P = %

Sample\section: ‘/[l’:._ﬁ(siA\rﬂ] m Estimate bound: f)ﬁr
. — K . . . ~
Jackknife: Virrs1) - 52320, Vi s-ay) m Estimate coordinate: vz
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Quantile-based set H

Fort=1,...,T,let Vi =L! — P.L. Let Vi,..., Vs be a sample
of V1.

m Define the vectors,
T=1,...,T

e
. ot £ T,
UT:{ o

iy

t=r.

U1

T T
He = {U = Zﬁrﬁfaﬁr > O;Zﬁr = 1} +R£
=1 =1
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Quantile-based set H

Fort=1,...,T,let Vi =L! —P.L. Let Vi,..., Vs be a sample
of V.

m If 7 =~ 1 then
[7S] ~ S,

prS




Numerical Method

m UC convex-relaxation
model
min Cq(Pg),
st:Pg>wv
v e Hy
Ps € Cq.
Lagrange
A€ RJTr R P>

multiplier

~CERIS

m Dual decomposition
D(A) = Da(A) + Du(N)
De(A) = min Cq — (A, Pg)
Pg€eCq
Dy(A) = min (A, v)

UEJ’(TA’

m Subgradient (inexact)

d=v—Pg




Numerical Method

m UC convex-relaxation model

m The approximation H, introduces inexact objective values
and subgradients

m Numerical method: proximate bundle method

20\ 2(\)
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Numerical Method

m UC convex-relaxation model

m The approximation H, introduces inexact objective values
and subgradients

m Numerical method: proximate bundle method
2(\) 2(\)
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Numerical Method

m UC convex-relaxation model

m The approximation H, introduces inexact objective values
and subgradients

m Numerical method: proximate bundle method
2(\) 2(\)
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Numerical Method

m UC convex-relaxation model

m The approximation H, introduces inexact objective values
and subgradients

m Numerical method: proximate bundle method
7(\) 7(\)
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Numerical Method

m UC convex-relaxation model

m The approximation H, introduces inexact objective values
and subgradients

m Numerical method: proximate bundle method
2(N) 7(\)
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Numerical Method

m UC convex-relaxation model

m The approximation H, introduces inexact objective values
and subgradients

m Numerical method: proximate bundle method
2(N) 2(N)

9()\k:+1)

~CERIS




Algorithm

Stochastic input: scenarios of L — P, = (L' —PL t=1,...,T)
m Construct H, from scenarios:

Bound: obit=1,...,T,
Coordinates: 0f,t=1,...,T.
Uy, T=1,...,T, represent risk-level =

m Solve the dual of the UC convex-relaxation model with
Prozimal Bundle.
(5\,1—5@,1_]) € Ri X Ca X Hy,
(), Pg, ) is e-optimal solution
m Primal-feasible recovery: Inexact Augmented Lagrangian
heuristic as in
Belloni, A., Lima, A. D. S., Maceira, M. P., and
Sagastizabal, C. A. (2003). Bundle relaxation and primal
recovery in unit commitment problems. The Brazilian casef
~CERI2 Annals of Operations Research, 120(1-4), 21-44. |




Proximal Bundle Algorithm

Stopping criterion: if Ay < tol stop; otherwise continue.
Iteration k: Jx C {1,...,k}, (A(N),d),j € Jy
Dual model: ¢*(\) = minjeg, AN) + 3,0 d? (A = AV
Master problem: maxy>q ¢*(\) — ﬁ”)\ — k|2

Inexact measure:

0 = @ — A(YF), o = |IVF = A/,
B = tyas + 0k, A = max{ay, B}

If 6 + B > 0 then increase t; go to “Master”; otherwise
continue.
m Compute: Dg(NF+1), D, (V1) and dF+!
m Prozimal point: If ANF1) > A(WF) — a(A(7F) — pF(AFHD))
then v#t1 = A+l otherwise A#+! = v/F
m Set 3k+1:{k+1}u{jegk:u§7ﬁo}, k:=k+1goto
JCERTS “Stopping criterion”.




Results

Test-system of 100 thermal units. Generated sample for
wind-generation, NREL pv-generation sample, NYC load
sample. Linux machine Intel®Core i5, 4 GB RAM. Python,
PYOMO, CPLEX.

m J{; generation time
g m 0.8 0.9 0.95 0.99 0.999

le+3 0.16644 | 0.16284 | 0.16283 | 0.16380 | 0.16281
le+4 0.38818 | 0.38786 | 0.38473 | 0.38599 | 0.40159
le+5 3.06511 | 3.06647 | 3.05644 | 3.03444 | 3.03745
le+6 36.3308 | 36.0005 | 35.4912 | 35.5562 | 34.9820

m Proximal bundle solution time

m Primal-feasible schedule time




Results

Test-system of 100 thermal units. Generated sample for
wind-generation, NREL pv-generation sample, NYC load
sample. Linux machine Intel®Core i5, 4 GB RAM. Python,
PYOMO, CPLEX.

m H, generation time

m Proximal bundle solution time
T 0.8 0.9 0.95 0.99 0.999

S
le+3 288.407 | 277.155 | 248.1538 | 228.030 | 213.338
le+4 294.526 | 272.319 | 235.641 | 229.197 | 211.717
le+5 290.500 | 262.473 | 231.087 | 222.972 | 210.498
le+ 6 289.534 | 253.946 | 239.6616 | 218.215 | 207.761
m Primal-feasible schedule time
JCERTS




Results

Test-system of 100 thermal units. Generated sample for
wind-generation, NREL pv-generation sample, NYC load

sample. Linux machine Intel®Core i5, 4 GB RAM. Python,
PYOMO, CPLEX.

m J(; generation time

m Proximal bundle solution time

m Primal-feasible schedule time
g T 0.8 0.9 0.95 0.99 0.999
le +3 349.615 | 305.905 | 260.871 | 294.778 | 223.165
le+4 335.263 | 320.730 | 347.149 | 310.208 | 231.084
le+5 303.610 | 344.920 | 318.462 | 264.668 | 227.088%
le+6 333.292 | 323.921 | 301.033 | 336.169 ST
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UC-DC Flow

Zp={z=(z1,...,20), 2t e RE . P(P}, — PL < 2) >}
Zﬂ RTK
K={1,...,K}, T={1,...,T}
min C(Pg)
st Yier Pl =Y m Brm(0k — 0m) > 2h k€Kt €T
z € Z,
|Bkm(5k - (5m)’ < Fim, km € Br
Pq € Cq

~CERIS



Approximation UC-DC Flow

H,.C RTE,
Estimators from data: per node, per time. Since KT is large,
we have to use p = 1 for some coordinates.

min C(Pg)

st Siep Pl = Y Brm(0k — 6m) > v k€K t €T
v e Hy
| Brm (0 — 6m)| < Fiem, km € Br
Pg € Cq

Dual decomposition: thermal-subproblem, network-subproblem,
stochastic-subproblem.

~CERIS




Future work

m Sensitivity analysis
m other percentile estimators - stability analysis
m apply contamination techniques - sensibility perturbation
distribution function.
Dupacové, J. (2006). Stress testing via contamination. In
Coping with uncertainty (pp. 29-46). Springer Berlin
Heidelberg.
m Value of Information
m probability weight selection for clusters: ||, — 9°||
m measure performance of representative of clusters

m Tighter MIP formulations for primal-feasible recovery

~CERIS




Stochastic Two-stage Models

m First-stage. Unit commitment decisions (binary variables)

min Sup(uG) + Sdn(vG) =+ E(Q(ua f))
s.t: ug € Sup,va € Sdn,
UG € Son, UG € Soff
u = (ug,vq, U, vq) € Sik-
uq start-up, vg shutdown, ug on, v off.
m Second-stage. Power dispatch. Q(u,£®) optimal value of
min C(Pg) + V(y)
s.t. Zi[elk P(t}l - ka Bkm(ék - 5m) + yi = L(S)Z - PT(S)Zw
keK,teT

| Biem (05 — 0m)| < Fim, km € Br
Ps e (‘fg(u)
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Stochastic Two-stage Models

m First-stage. Unit commitment decisions (binary variables)

min  Syp(ua) + San(va) + E(Q(u, §))
s.t: uagG c Supqu S 8dn’

UG € Son, VG € Soff,

u = (ug,vq, Ug, 0G) € Sik.

uq start-up, vg shutdown, ug on, v off.
m Second-stage. Power dispatch. Q(u,£®) optimal value of

min C(Pg) + V(y)
s.t. Z{elk Péi = 2 km Brm 0k — 6m) + yi = L(s)'}€ — P,ﬂ(s)f€7
keKteT
| Biem (0 — 0m)| < Fim, km € Br
Ps e (‘fg(u)

CC. Py fixed v some risk-level w. TS. Pg per realization s,

CERTS. .
crmTNIIIIMIZE expected cost.




Future work

m Scalable numerical approach. Stochastic dual dynamic

programming (SDDP approximate dynamic programming
technique)
Shapiro, A. (2011). Analysis of stochastic dual dynamic
programming method. European Journal of Operational
Research, 209(1), 63-72.

m Value of information

m Value of stochastic information (VSS) - performance of
expected value problem

m VSS for cluster - measure information loss

m Use VSS to select number of clusters

~CERIS




Scenario Identification and

Reduction
Laurie Tupper




Motivation

The scale and dimensionality of power system models result in
problems of computational tractability, so we seek methods to
effectively represent uncertainty in low cardinality sets.
This is challenging due to

m highly non stationary time-series

m multiple locations, various levels of correlation between
locations

m peaks and sudden drops are important

m no clear clusters appear in the data

~CERIS




Outline

m Wind data characteristics (a quick tour)
m k-means clustering

m Alternative distance metric

m Band Depth
m Jaccard distance

m k-medoids clustering
m Clustering results

m Conclusions and future directions

~CERIS




Inter-site correlation

Correlation (sometimes lagged) between sites changes over time

1 Site 1 144 Site 2 144 Site 3 144
1

Site 1 0.8
0.8

184
0.7
0.8

Site 2
05
144 0.4
0.2

Site 3
0.2




Daily behavior

m No consistent daily shape in wind speed

m Days vary widely in mean, amount of variance, smoothness
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Daily Trajectory (10 min increments) Daily Trajectory (10 min increments)

Wind speeds for high variance (left panel) and low variance (right panel) days for o,
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&

a single site, shows significantly different behaviors.
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Annual variation

m Daily behavior does, however, follow annual cycle
m For example:

m Variance over course of day higher in winter (left panel)
m More short-term erratic behavior in summer (right panel)

26
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) I N |
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45 55 65 75

T T T T T T T T
0 100 200 300 0 100 200 300

Index Index




To obtain a typical daily wind speed curve, we fit a generalized
additive model of the form

W = s(t,d)

where W represents wind speed, and s(¢, d) is some smooth
function of time of day, ¢, and day of year, d.

200 o

.. 200

100 r re

50 100
Time
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June/Dec 1-3, year 1

15 20
|

Speed
10
!

0 20 40 60 80 100 120 140

Time

Figure : Observations from June (red) and December (blue), with the typical

daily curves shown as dashed lines.
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Figure : The first 15 days of June (black) and December (red) in year 1. Left,
orignal observations; right, typical daily curves removed. The predominant effect
is to shift the center of the observations.



K-means clustering

m Straightforward k-means clustering is not effective
m Mean speed of each day dominates cluster assignment

m Aggregating observations gives unrealistically smooth
centers

Speed
10 15 20 25




K-means clustering

m Straightforward k-means clustering is not effective

m Mean speed of each day dominates cluster assignment

m Aggregating observations gives unrealistically smooth

centers

Speed

Unsupervised clustering is
convenient for large data
sets; alternatives are
investigated that can provide
more effective scenarios




Dissimilarity between observations

m recall that k-means clustering is based on the distance
between observations in a set

m observations are assigned to sets to minimize total distance
within the cluster

m distance is the euclidian distance at each point

m slight differences in mean behavior dominate major
differences in shape

~CERIS




The band depth

m Developed by Lopez-Pintado and Romo (2009) to judge
typical or atypical shape

m Let x; represent an observation, x;; represent the value at
time point ¢, and X denote the entire set of observations

m A band b is defined by B observations (z1,...,zp) drawn
from X its upper limit is the maximum value of all the
observations defining the band:

by = max xi
i=1,..,B

and lower limit is the minimum value:

by = min x4

i=1,...,.B

~CERIS



Construction of a band: defining observations and resulting
band limits

15 20 25
1
15 20 25

10

Wind Speed
10

Wind Speed

5
I
5
1

0 40 80 120 0 40 80 120

Time Time

Original band depth is binary, modified band depth uses
proportion of observation within band

~CERIS



Band Depth to Distance

m clustering algorithms require a distance measure

m similarity scores of the band depth are not a distance
metric

m Jaccard distance provides a conversion:

m Jaccard measure of distance between two sets A; and As is

B ‘Al ﬁAQ’

‘Al UAQ’

~CERIS




Distance for modified band depth

m Similar observations will fall into each band at similar times

m Each pair of observations x and y receives a similarity score
for each band b:

b @) 0 T)
= 1) UT ()]

where T°(x) is the set of times when z is in b
m This is converted to a distance score for each band:

b b
Lk, =1-J,

m The overall distance is the average score over b € Uy, the
set of all bands containing x or y at any time:

Doy = |ny| 2 Ly

~CERIS b€Uzy




K-medoids

m Can now use any clustering method that requires only a
pairwise distance matrix

m One method is the k-medoids clustering algorithm:

~CERIS

Iterative but non-hierarchical

Similar to k-means, but cluster centers must always be
observations from the dataset

Begin with random centers

Assign all observations to nearest center, then reset centers
to most central observation in each cluster

Iterate until stable




Comparison of clustering results

m 90 observations, corresponding to the first 15 days of June
and December in each year of the dataset

m Six clusters

m First, we apply the distance metric and clustering directly
to the wind speed time series

~CERIS




a [ 9
& & &
- @ Q
I - s o = o
noa nos noo&
i oo g oo g w
& - I B o
- o = ® o
5 - T 2
R R R
o o o
o o o o
T T T T T T T T T T T T T T T T T T T T T
020 80 100 140 020 &0 100 140 020 &0 100 140
Jun 3 Dec 11 Jun 7 Dec 11 Jun 15 Dec 5
oo v o
- @ & _ &
2 o ® o - 8
;] v B W&
# o | Howa | # w
5 2 [ 5 =
T 2| = © o
B T 5= P
R = L
o © o
o o o
LN B B B T T T T T T T
0 20 80 100 140 020 &0 100 140 0 20 &0 100 140
Jun 17 Dec2 Jun 3 Decs Jun 0 Dec 11

Figure : Clustering results for original wind speed data, with number of June
(black) and December (red) observations in each cluster noted on axis. Cluster
centers (medoids) are shown in green.



m Observations from the same month tend to be clustered
together, reflecting the different average levels in winter
and summer

m Removing the GAM-based daily shape from each day
before clustering gives more balanced groups

m Adjusted Rand Index between the two classifications of the
observations is only 0.126, indicating that classifications
are dissimilar

~CERIS
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Theoretical questions

m How can we assess effectiveness of these methods?

m What objective function do we use to judge optimality of
cluster assignments?

m Can we determine how much information is lost by using
our chosen representatives?

m If we do not have a fixed number of clusters, can we find the
optimal number?

m Are these methods sensitive to initialization or slight
changes in observations?

m Cluster sizes and assignments
m Representatives from each cluster
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Extensions of the problem

m Spatial component
m Extension to multiple locations does not incorporate spatial
information explicitly
m Non-constant correlations between sites, with lags
depending on spatial information
m Will increase both complexity and size of the problem

m Different lengths of observations

m Longer outlook means taking into account correlations
between days
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Conclusions

The primary conclusions of recent work are as follows:

m Implementation separates the challenge of the stochastic
variables from the system complexity, providing
computationally scalable solutions

m The chance-constrained formulation of SCUC provides a
balance of risk between expected value methods and robust
methods

m Initial tests show promising computation times for
simplified problems

m Unsupervised clustering can still be implemented and some
shortcomings avoided

m Clustering on a new distance metric, with centroid

representatives realizations show more realistic behaviors
CERTS
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m Martinez, M. G., & Anderson, C. L. A Risk-averse
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Speeds, presented at the Joint Statistical Meetings, Boston
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Next directions

The next goals for this project are summarized as follows:

m Stochastic Unit Commitment
m Explore other percentile estimators and sensitivity of
optimal solution
m Test scalability of CCP formulation with larger networks
m Expand formulation to include AC power flow
m Test value of lost information in two-stage dynamic
formulation
m Scenario Reduction
m Estimation of the optimal number of clusters for capturing
uncertainty
m Sensitivity of cluster representative to initial conditions

m Test the sensitivity of solution quality to scenario selection
and probability estimates.
JCERITS
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