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Objective

Development of a solution for SCUC that will be

Flexible: able to include uncertain renewable resources in a
realistic way, integrate with other tools

Robust: provide optimal (or ✏-optimal) solutions

Scalable: applicable to reasonably-sized systems in
practical computation time

Combination of formulation and algorithm implementation
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Background

In 2013, we proposed to investigate chance-constrained
formulations that will

ease the requirement for perfectly binding constraints,

require constraints to be met with some large probability

ensure scalability through separation of stochastic

complexity and system complexity

Replicating the reliability requirements of the power system
operator
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1 Use modestly-sized test cases, to filter approach to most
promising
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2 Investigate methods for reduction of scenario sets and
approximation of excluded scenarios
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Stochastic Models

1 Chance-constrained UC Models
Quantile-region MIP approximation
Quantile-based Relaxation

2 Stochastic Two-stage Models
Risk-neutral two-stage UC Model (Expected recourse
actions)
Risk-averse two-stage UC Model (Conditional value-at-risk
recourse actions)

Goals: formulate numerically tractable stochastic models based
on data – scenarios that capture statistical properties of
renewable generation, and possibly load



Chance-constrained Optimization
Introduction

The general form of the optimization model considered:
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Optimization Problem
Approximation
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Quantile-based set H
⇡

For t = 1, . . . , T , let Vt = Lt �Pt

r

. Let V1, . . . , VS

be a sample
of Vt.

Ordered sample

V[1]  V[2]  · · ·  V[S]

Estimate bound: v̂t
⇡

Estimate coordinate: v̂t
⌧

Simple estimator:
k = d⇡Se, V[k] (problem:
biased)
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Quantile-based set H
⇡
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Quantile-based set H
⇡
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Numerical Method

UC convex-relaxation
model
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Numerical Method

UC convex-relaxation model

The approximation H
⇡

introduces inexact objective values
and subgradients

Numerical method: proximate bundle method
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Algorithm

Stochastic input: scenarios of L�P
r

= (Lt �Pt

r

, t = 1, . . . , T )
Construct H

⇡

from scenarios:

Bound: v̂

t

⇡

, t = 1, . . . , T,
Coordinates: v̂

t

⇢

, t = 1, . . . , T.

v̂

⌧

, ⌧ = 1, . . . , T , represent risk-level ⇡
Solve the dual of the UC convex-relaxation model with
Proximal Bundle.

(�̄, P̄
G

, v̄) 2 RT

+ ⇥ C
G

⇥H
⇡

,

(�̄, P̄
G

, v̄) is ✏-optimal solution

Primal-feasible recovery: Inexact Augmented Lagrangian
heuristic as in
Belloni, A., Lima, A. D. S., Maceira, M. P., and
Sagastizábal, C. A. (2003). Bundle relaxation and primal
recovery in unit commitment problems. The Brazilian case.
Annals of Operations Research, 120(1-4), 21-44.



Proximal Bundle Algorithm

Stopping criterion: if A
k

< tol stop; otherwise continue.

Iteration k: J
k

⇢ {1, . . . , k}, (A(�j), dj), j 2 J
k

Dual model: �k(�) = min
j2J

k

A(�j) +
P

t2T d

t

j(�t � �

t

j)

Master problem: max
��0 �

k(�)� 1
2t

k

k�� �

kk2
Inexact measure:

�

k

= '

k �A(�k), ↵

k

= k�k � �

k+1k/t
k

,

�

k

= t
k

↵

2
k

+ �

k

, A

k

= max{↵
k

,�

k

}.

If �
k

+ �

k

> 0 then increase t
k

go to “Master”; otherwise
continue.

Compute: D
G

(�k+1), D
v

(�k+1), and d

k+1

Proximal point: If A(�k+1) � A(⌫k)� a(A(�k)� �

k(�k+1))
then �

k+1 = �

k+1; otherwise �

k+1 = ⌫

k

Set J
k+1 = {k + 1} [ {j 2 J

k

: µk

j

6= 0}, k := k + 1 go to
“Stopping criterion”.



Results

Test-system of 100 thermal units. Generated sample for
wind-generation, NREL pv-generation sample, NYC load
sample. Linux machine IntelrCore i5, 4 GB RAM. Python,
PYOMO, CPLEX.

H
⇡

generation time
HHHHHHS

⇡

0.8 0.9 0.95 0.99 0.999

1e+ 3 0.16644 0.16284 0.16283 0.16380 0.16281
1e+ 4 0.38818 0.38786 0.38473 0.38599 0.40159
1e+ 5 3.06511 3.06647 3.05644 3.03444 3.03745
1e+ 6 36.3308 36.0005 35.4912 35.5562 34.9820

Proximal bundle solution time

Primal-feasible schedule time
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Test-system of 100 thermal units. Generated sample for
wind-generation, NREL pv-generation sample, NYC load
sample. Linux machine IntelrCore i5, 4 GB RAM. Python,
PYOMO, CPLEX.

H
⇡
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Proximal bundle solution time
HHHHHHS

⇡

0.8 0.9 0.95 0.99 0.999

1e+ 3 288.407 277.155 248.1538 228.030 213.338
1e+ 4 294.526 272.319 235.641 229.197 211.717
1e+ 5 290.500 262.473 231.087 222.972 210.498
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Primal-feasible schedule time



Results

Test-system of 100 thermal units. Generated sample for
wind-generation, NREL pv-generation sample, NYC load
sample. Linux machine IntelrCore i5, 4 GB RAM. Python,
PYOMO, CPLEX.

H
⇡

generation time

Proximal bundle solution time

Primal-feasible schedule time
HHHHHHS

⇡

0.8 0.9 0.95 0.99 0.999

1e+ 3 349.615 305.905 260.871 294.778 223.165
1e+ 4 335.263 320.730 347.149 310.208 231.084
1e+ 5 303.610 344.920 318.462 264.668 227.088
1e+ 6 333.292 323.921 301.033 336.169 234.761



UC-DC Flow

Z
⇡

:= {z = (z1, . . . , zT ), zt 2 RK : P(Pt

D

�Pt

r

 z) � ⇡}
Z
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⇢ RTK .
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Approximation UC-DC Flow

H
⇡

⇢ RTK .
Estimators from data: per node, per time. Since KT is large,
we have to use ⇢ = 1 for some coordinates.

min C(P
G

)

s.t.
P

I

i2I
k

P

t

G
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�
P

km
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� �
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, k 2 K, t 2 T
v 2 H

⇡

|B
km

(�
k

� �

m

)|  F

km

, km 2 Br

P

G

2 C
G

Dual decomposition: thermal-subproblem, network-subproblem,
stochastic-subproblem.



Future work

Sensitivity analysis
other percentile estimators - stability analysis
apply contamination techniques - sensibility perturbation
distribution function.
Dupačová, J. (2006). Stress testing via contamination. In
Coping with uncertainty (pp. 29-46). Springer Berlin
Heidelberg.

Value of Information
probability weight selection for clusters: kv̂⌧ � v̂

ck
measure performance of representative of clusters

Tighter MIP formulations for primal-feasible recovery



Stochastic Two-stage Models

First-stage. Unit commitment decisions (binary variables)

min Sup(uG) + Sdn(vG) + E(Q(u, ⇠))
s.t: u
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fixed v some risk-level ⇡. TS. P
G

per realization s,
minimize expected cost.
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Future work

Scalable numerical approach. Stochastic dual dynamic
programming (SDDP approximate dynamic programming
technique)
Shapiro, A. (2011). Analysis of stochastic dual dynamic
programming method. European Journal of Operational
Research, 209(1), 63-72.

Value of information
Value of stochastic information (VSS) - performance of
expected value problem
VSS for cluster - measure information loss
Use VSS to select number of clusters



Scenario Identification and

Reduction

Laurie Tupper



Motivation

The scale and dimensionality of power system models result in
problems of computational tractability, so we seek methods to
e↵ectively represent uncertainty in low cardinality sets.
This is challenging due to

highly non stationary time-series

multiple locations, various levels of correlation between
locations

peaks and sudden drops are important

no clear clusters appear in the data



Outline

Wind data characteristics (a quick tour)

k-means clustering

Alternative distance metric
Band Depth
Jaccard distance

k-medoids clustering

Clustering results

Conclusions and future directions



Inter-site correlation

Correlation (sometimes lagged) between sites changes over time



Daily behavior

No consistent daily shape in wind speed

Days vary widely in mean, amount of variance, smoothness

Wind speeds for high variance (left panel) and low variance (right panel) days for

a single site, shows significantly di↵erent behaviors.

cla28
Daily Trajectory (10 min increments)

cla28
Daily Trajectory (10 min increments)



Annual variation

Daily behavior does, however, follow annual cycle

For example:
Variance over course of day higher in winter (left panel)
More short-term erratic behavior in summer (right panel)



To obtain a typical daily wind speed curve, we fit a generalized
additive model of the form

W = s(t, d)

where W represents wind speed, and s(t, d) is some smooth
function of time of day, t, and day of year, d.

Figure : Typical wind speed curves for each day of the year.



Figure : Observations from June (red) and December (blue), with the typical
daily curves shown as dashed lines.



Figure : The first 15 days of June (black) and December (red) in year 1. Left,
orignal observations; right, typical daily curves removed. The predominant e↵ect
is to shift the center of the observations.



K-means clustering

Straightforward k-means clustering is not e↵ective

Mean speed of each day dominates cluster assignment

Aggregating observations gives unrealistically smooth
centers

Unsupervised clustering is
convenient for large data
sets; alternatives are

investigated that can provide
more e↵ective scenarios
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Dissimilarity between observations

recall that k-means clustering is based on the distance
between observations in a set

observations are assigned to sets to minimize total distance
within the cluster

distance is the euclidian distance at each point

slight di↵erences in mean behavior dominate major
di↵erences in shape



The band depth

Developed by Lopez-Pintado and Romo (2009) to judge
typical or atypical shape

Let x
i

represent an observation, x
it

represent the value at
time point t, and X denote the entire set of observations

A band b is defined by B observations (x1, . . . , xB) drawn
from X; its upper limit is the maximum value of all the
observations defining the band:

b

ut

= max
i=1,...,B

x

it

and lower limit is the minimum value:

b

lt

= min
i=1,...,B

x

it



Construction of a band: defining observations and resulting
band limits

Original band depth is binary, modified band depth uses
proportion of observation within band



Band Depth to Distance

clustering algorithms require a distance measure

similarity scores of the band depth are not a distance
metric

Jaccard distance provides a conversion:

Jaccard measure of distance between two sets A1 and A2 is

1� |A1 \A2|
|A1 [A2|



Distance for modified band depth

Similar observations will fall into each band at similar times

Each pair of observations x and y receives a similarity score
for each band b:

J

b

xy

=
|T b(x) \ T

b(y)|
|T b(x) [ T

b(y)|

where T

b(x) is the set of times when x is in b

This is converted to a distance score for each band:

L

b

xy

= 1� J

b

xy

The overall distance is the average score over b 2 U

xy

, the
set of all bands containing x or y at any time:

D

xy

=
1

|U
xy

|
X

b2U
xy

L

b

xy



K-medoids

Can now use any clustering method that requires only a
pairwise distance matrix

One method is the k-medoids clustering algorithm:
Iterative but non-hierarchical
Similar to k-means, but cluster centers must always be
observations from the dataset
Begin with random centers
Assign all observations to nearest center, then reset centers
to most central observation in each cluster
Iterate until stable



Comparison of clustering results

90 observations, corresponding to the first 15 days of June
and December in each year of the dataset

Six clusters

First, we apply the distance metric and clustering directly
to the wind speed time series



Figure : Clustering results for original wind speed data, with number of June
(black) and December (red) observations in each cluster noted on axis. Cluster
centers (medoids) are shown in green.



Observations from the same month tend to be clustered
together, reflecting the di↵erent average levels in winter
and summer

Removing the GAM-based daily shape from each day
before clustering gives more balanced groups

Adjusted Rand Index between the two classifications of the
observations is only 0.126, indicating that classifications
are dissimilar



Figure : Clustering results for observations with typical daily shape removed,
with number of June (black) and December (red) observations in each cluster
noted on axis. Cluster centers (medoids) are shown in green.



Figure : For comparison, using standard k-means with number of June (black)
and December (red) observations in each cluster noted on axis. Cluster centers
(medoids) are shown in green.



Theoretical questions

How can we assess e↵ectiveness of these methods?
What objective function do we use to judge optimality of
cluster assignments?
Can we determine how much information is lost by using
our chosen representatives?
If we do not have a fixed number of clusters, can we find the
optimal number?

Are these methods sensitive to initialization or slight
changes in observations?

Cluster sizes and assignments
Representatives from each cluster



Extensions of the problem

Spatial component
Extension to multiple locations does not incorporate spatial
information explicitly
Non-constant correlations between sites, with lags
depending on spatial information
Will increase both complexity and size of the problem

Di↵erent lengths of observations
Longer outlook means taking into account correlations
between days



Conclusions

The primary conclusions of recent work are as follows:

Implementation separates the challenge of the stochastic
variables from the system complexity, providing
computationally scalable solutions

The chance-constrained formulation of SCUC provides a
balance of risk between expected value methods and robust
methods

Initial tests show promising computation times for
simplified problems

Unsupervised clustering can still be implemented and some
shortcomings avoided

Clustering on a new distance metric, with centroid
representatives realizations show more realistic behaviors
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Next directions

The next goals for this project are summarized as follows:

Stochastic Unit Commitment
Explore other percentile estimators and sensitivity of
optimal solution
Test scalability of CCP formulation with larger networks
Expand formulation to include AC power flow
Test value of lost information in two-stage dynamic
formulation

Scenario Reduction
Estimation of the optimal number of clusters for capturing
uncertainty
Sensitivity of cluster representative to initial conditions

Test the sensitivity of solution quality to scenario selection
and probability estimates.
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