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OUTLINE OF THE PRESENTATION
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PART |. Stochastic Inputs
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PART I. Stochastic Inputs
a) Simulating Wind Power and Load
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North Eastern Test Network (NYNE)

An NSF [/UCRC

Reduced NPCC System (Allen, Lang and llic (2008))
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16 Wind Site Clusters
(Derived from the EWITS data from NREL ) A NSF ILUCRC

New England

: i, A Montreal
~ N\ g%Ottawa /

Kitchener,
‘ Hamiltol

Each cluster was determined by
a principal components analysis
and used to define a wind farm at
a node on the NYNE network

Eye alt 45324 mi
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Correlations among the 16 Wind and 7 Load Sites

An NSF [/UCRC
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Uncertainty of Load and Wind Speed

(New York City as an example) AnNSF JUCRC

16 ARMAX models estimated for hourly Temperature = f(Seasonal Cycles)
16 ARMAX models estimated for hourly Log[Wind Speed + 1] = f(Temperature, Seasonal Cycles)
7 ARMAX models estimated for hourly Log[Load] = f(CDD, HDD, Seasonal Cycles)
- Load model estimates Temperature-Sensitive Load and Non Temperature-Sensitive Load
- Simulate hourly profiles of Wind Speed and Load for any specified day given a forecast of Temperature

Load in NYC Wind Speed near NYC
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Hour Hour
Dependent Variable Temperature Log[Wind Speed + 1] Log[Load]
OLS R2 79% 8% 90%
ARMAX Pseudo R2 99% 75% 99%
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Percentage Coefficients of Variation for
Load (Region 6) and Wind Power (Area 15) Inputs

An NSF [/UCRC

Econometric Models

Standard Deviations of the Forecasting Errors for
Log[Load] and Log[Wind Speed + 1]
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Hours Ahead

—— g Load) —e—oaWind Speed + 1) — =] og[Load}=10

(St. Dev. of Log[Load])x10

= St. Dev. of Log[Wind Speed + 1]

Simulated Stochastic Inputs
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Input Model for the Stochastic Behavior
of Potential Wind Generation

Four discrete intact system states each hour Steps:

—> Sixteen transitions from one hour to the next 1. Simulate a sample of daily wind

MW injections speeds for a specified day

f conditionally on forecasted
temperature using the
econometric models for 16
sites in New York State and
New England.

2. Convert wind speed to potential
wind power, rank the system
total and assign the sample
observations to bins.

3. Use the assigned observations
to estimate the transition
probabilities from hour t-1 to
hourtfort=1,2,....,24

B central “high-probability” path
[ load following ramp up capacity

B load following ramp down capacity
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Capabilities of the MATLAB Functions
Used to Simulate Wind Power and Load

The following MATLAB functions make it possible to:

— Simulate a sample of hourly realizations of wind speed at 16 sites and load in 7 regions in New York
State and New England for any specified day of the year,

— Transform these simulated values into the stochastic inputs used by the multi-period SuperOPF.

« SIMNPCCWindLoad()

— Generates a time series of hourly realizations of wind speed and load using estimated ARMAX models
for 16 wind sites and 7 load regions,

— The number of daily realizations (sample size), the starting hour, and the number of hours in each daily
realization can be customized for any specified day of the year.
 ConvertWindToPower()
— Converts the simulated hourly wind speeds to the potential wind power from a wind farm at each site
using the methodology described in Norgaard (2004).
 CreateScenarios()

— Generates wind power and load scenarios for each hour using the bin method to cluster the simulated
hourly realizations ranked by the total potential wind power for all 16 sites,

— Calculates the transition probabilities from one hour to the next hour for all scenarios,

— Applies the same bin allocations to each wind site and load region and computes the mean value for
each bin,

The number of scenarios and the probability for each scenario bin can be customized.
. SetumedLoad()
Sets up the code that calls the three MATLAB functions described above,
— Creates the stochastic input files for potential wind power and load in the format used by the SuperOPF,

— Creates plots of the wind power and load realizations and the scenario profiles (PlotWind.m,
PlotLoad.m).

A & 4 Cornell University C E RTS
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PART I. Stochastic Inputs
b) The Effects on System Costs
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| PSERC |

2"d Generation Multi-Period SuperOPF

An NSF [/UCRC
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* Includes:
e Multi-Period Optimization
o Storage Capacity
o Stochastic Wind Generation
 Ramping Costs
» Different Reserves (contingency, load following)
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System Characteristics of the NENY Network \

for a Simulated Hot Summer Day (Cases 1 & 2) A NSF IUCRG
NYNE GENERATING CAPACITY
Peaking (GW) 37 Characteristics of Wind Inputs
Baseload (GW) 26 Wind/conventional capacity: 24%
Fixed Imports (GW) 3 _ pacity. 24,
TOTAL (GW) 66 Av. capacity factor of wind: 38%,
New Wind (GW) 16 E[Potential Wind Generation] (E[PWG])
Storage Capacity could supply 12% of the daily energy.
(GW) varying
Storage Energy (GWh) 34
Peak Load (GW) 62
Average Load (GW) 52

Case 1. No Wind: Initial base system
Case 2. Case 1 + 16 GW of wind capacity at 16 locations:
a: Deterministic inputs for wind and load

- No Uncertainty,
b: Stochastic inputs for wind and load calibrated at the system level

- Medium Uncertainty,
c. Stochastic inputs for wind and load calibrated at the site level
- High Uncertainty.
I} Cornell University C ERTS
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Changes in Total Operating Costs

Different Levels of Uncertainty for Load and Wind Power An NSF IUCRG

-

| : Adding Wind Capacity, (c2a —cl)
Il : No Uncertainty - Medium Uncertainty (c2b — c2a)
lIl : No Uncertainty = High Uncertainty (c2c — c2a)

| I Il
E[ $1000/day]

| - Much lower Generation Costs & slightly higher Ramping Costs
Il = Slightly Higher Ramping Costs & some PWG spilled (higher Gen. Costs)
Il > Even Higher Ramping Costs & more PWG spilled (higher Gen. Costs)

OVERALL EFFECT OF UNCERTAINTY ON COST IS SMALL
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The Timing of the Forecasts Used as -\

Inputs for the Optimization

The conclusions so far:

O Greater uncertainty about the future levels of Load and Potential Wind
Generation (PWG) has the expected effects on system operations:

» Increases the reserve capacity needed for ramping,
» Spills more of the PWG,

O Greater uncertainty only leads to a small increase in the E[Total Daily
System Cost],

O Although our previous research found a much larger difference in system
costs between deterministic PWG and stochastic PWG, the earlier analysis
used a sample of actual summer days instead of econometric forecasts
to represent the level of uncertainty,

O The useful information from the ARMA models of the autocorrelations in
the simulations of Load and PWG only lasts for 8-10 hours ahead.

Next step:

O Compare the effects of using forecasts made SIX hours ahead (like a Day-
Ahead Market) with forecasts made ONE hour ahead (like Cases 2a-c) on
the optimal system operations in Hour 1.
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The Optimal Dispatch Patterns in the Five Intact
System States for Hour 1 using Different Forecasts

An NSF [/UCRC

Differences in the Optimal Dispatch for Hour 1: Differences in the Optimal Dispatch for Hour 1:
ONE-Hour-Ahead Forecast SIX-Hour-Ahead Forecast

1000

800 800

600 600

400 400 -

200 200 -

-200 1 2 A 2 -200 A 3

-400 100 1

600 S—

600 - ._

800 800 |
-1000 1000
Intact System State Intact System State
B AWind WA Conventional 8 Wind Spilled B AWind B AConventional 8 Wind Spilled
A = Deviation around the Mean for Hour 1, (P{States 1 and 5} = 0) A = Deviation around the Mean for Hour 1
Range of Conventional Generation in Hour 1 Range of Conventional Generation in Hour 1
= Ramping Capacity Needed = 192 MW = Ramping Capacity Needed = 1514 MW

Using the updated forecasts made ONE hour ahead requires committing only
192/1514 = 1/8!" of the reserve capacity needed for ramping in Hour 1

- A potential benefit of using a rolling horizon for market operations.
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PART II: Deferrable Demand
a) Model Specifications
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SPECIFICATIONS FOR DEFERRABLE
DEMAND AR NSF IUCRG

d Thermal Storage, Space Conditioning (Total Capacity 17 GWh)
» Total potentially deferrable demand is 34 GWh on the hottest (coldest) day,
» Storage capacity is 30 MWh/unit (86% efficient, manufactured by Calmac),
» Maximum hourly energy delivered for space conditioning is proportional to TSL*.

 Electric Hot Water Heating (Total Capacity 17 GWh)

» Total potentially deferrable demand is 34 GWh per day,

» The size of each water tank is 80 gallons with a heating capacity (recovery rate) of 20
GPH (equivalent to 4.5 kW/hour) (91% efficient, manufactured by Rheem),

» Maximum energy of the hot water used each hour is proportional to N-TSL*,

 Electric Vehicles (Total Capacity 17 GWh)

» Total deferrable demand is less than 17 GWh per day (the average number of miles
driven each day < the maximum electric range) ,

» Usable battery capacity is 10.8 kWh/vehicle (90% efficient, lithium-ion in GM Volt)

» Average charging power is 3.31 kW (Levell/Level2 chargers = 70%/30%),

» Charging is restricted by the Commuter-at-Home Profile (determines the # of vehicles
attached to grid each hour) and the Commuter-Driving Profile (determines how much
energy is used for transportation each hour).

» Temperature Sensitive Load (TSL) and Non-Temperature Sensitive Load (N-TSL) are
derived from the estimated econometric models of demand.

_?I Cornell University C E RTS
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Daily Profiles of (Deferrable) Energy Services
Demanded by Customers for Four Seasons* an NS IUCRC

Summer Fall
WWater Heating M Space Conditioning  © Ev discharging WWater Heating M Space Conditioning Ev discharging
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* The Energy Demanded by Customers Each Hour for Specific Energy Services
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The Structure of the SuperOPF

An NSF [/UCRC

- Centrally Controlled System (Passive Aggregators)

LEGEND

1. Inputs for the SuperOPF
SyStem Operator 2. OII))timum Outputi

3. Market Payments

DD : Deferrable Demand
WH : Electric Water Heating
TS : Thermal Storage

EV : Electric Vehicle

CD : Conventional Demand

la) Stochastic Wind Inputs

1b) Stochastic Load Inputs

3a) Payment for Energy and
Reserves

3b) Net-payment for DD services

la, 1b 2a-d

SuperOPF Model

2a) Dispatch and Reserves  2¢) Nodal price for Energy
2b) Nodal Prices for 2d) Optimum DD Action
energy and reserves

2a,2b

Generators

Aggregators

1c) Offer Prices and Capacities
for Selling Energy and
Reserves

1d) Available DD Capabilities
3c) Payment for Energy

/ Sthart Metéin
WH D
WH CD
TS 8 BV BV CD

Cornell University C E RTS
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PART II: Deferrable Demand
b) DD Controlled by an ISO
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System Characteristics of the NENY Network for

Simulated Days in Different Seasons pPT—
Characteristics of Wind and Load
NYNE GENERATING CAPACITY Same installed wind capacity every day with
Peaking (GW) 37 Potential Wind Generation (PWG) and Load
Baseload (GW) 26 simulated for each specified day.
Fixed Imports (GW) 3 Properties of Deferrable Demand (DD)
TOTAL (GW) 66 For each' hour, the forecasted Load is divided into
. conventional demand, DD for space
New Wind (GW) 16 conditioning (cooling or heating), and DD for hot
Storage Capacity (GWh) o1 water. DD for transportation is an additional
Peak Load (GW) Varies by Day| source of demand.
Average Load (GW) Varies by Day

Case 1. No Wind: Initial base system,

Case 2c:. Case 1 + 16 GW of wind capacity at 16 locations,

Case 3a: Case 2c + 51 GWh of DD capacity at 5 load centers:
- 17 GWh of Storage for Space Cooling* or Heating* (Proportional to TSL**)
- 17 GWh of Storage for Hot Water*** (Proportional to N-TSL**)
- 17 GWh of Storage for Electric Vehicles (10% penetration)

* The corresponding amount of potential DD = 2 x energy capacity of storage on the hottest/coldest day
** Temperature Sensitive Load (TSL) and Non-Temperature Sensitive Load (N-TSL)
i The corresponding amount of potential DD = 2 x energy capacity of storage every day

: I| Cornell University C E RTS
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The Effects of Deferrable Demand on System Costs [RgSsSs

for the Peak Summer Day = No Surprises P
Case 1: No Wind Case 2c: + Wind Case 3a: + DD

B

5k

Case 1: No wind Case 2c: + Wind Case 3a: + DD
E[Generationn Cost] ($1000) 55,682 42,791 42,514
E[Ramping Cost] ($1000) 664 976 383
E[Operating Cost] ($1000) 56,346 43,767 42,897
Max Conventional Capacity (MW) 59,904 55,281 51,906
E[Wind Generation] (MWH) - 144,258 149,909

_?'I Cornell University C E RTS
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PART II: Deferrable Demand
c) Cost Effects for Customers
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Five Different Types of “Customer”

An NSF [/UCRC

No DD capacity (No Storage)

Water Heating only (WH)

Thermal (Hot and Cold) Storage only (TS)
Electric Vehicle only (EV)

All three types of DD (All DDs)

akwbdE

- Based on Case 3a (Base Case 1 + Wind + DD)

- The total energy capacity for electric vehicles (17 GWh) corresponds to a 10% penetration
rate for registered vehicles, and this determines the total number of customers with an EV
(1.5 million) and the total number of customers (15 million). Every customer is assumed to
have identical daily needs for all non-transportation electric energy services. The
customers are assigned to five load centers in proportion to the total daily loads at those
locations in the summer, and the hourly patterns of demand for electric energy services
vary by location.

- The energy storage capacities for a customer with TS only or with WH only are calibrated
to be the same as the maximum useable energy capacity of an EV. This simplifies making
comparisons among different types of customer.

- The results presented for different types of customer correspond to the system average for
all five locations.

Cornell University C E RTS
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Hourly Patterns of Energy Purchases by
Customers in Different Seasons (kWh)

An NSF [/UCRC

Summer Day (peak) Fall Day

Energy Demand by Four Tupes of Customers
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Net Payments by Customers using Efficient
Prices versus Flat Energy Prices ($/day)

An NSF [/UCRC

Summer Day (-2 > 12 $/day) Fall Day (-1 > 2.5 $/day)

B Energy Payment B Ramping Payment

Capacity Payment

s Energy Payment’ B8 'Ramping Payment’ - 'Capacity Payment’ _ Cap|ta| Payments for
=@=Flat Payment =@=0ptimum Payment B=Qptimum Payment =8=Flat Payment ) .
zoo Generating Capacity occur
o only for the Annual
- . System Peak Load when
8.00 150 Y

e N

(2.00)

Winter Day (-1 > 2.5 $/day)

(1.00)

Spring Day (-1 > 2.5 $/day)

W'Energy Payment’ BS'Ramping Payment’ 'Capacity Payment'

=E=0ptimum Payment =#=f|at Payment

Payment ($/day)

e e

i

Payment (3/day)

i 'Energy Payment' B 'Ramping Payment' 'Capacity Payment'

=l=0ptimum Payment =®=F|at Payment

o
8

(1.00)

No Storage - TSonly -
(0.50)

Adequacy Standards are

3 B
s 6—\\( \ g set ($1.76/kW for demand
2 a0 % oso at the peak hour in the
. . Summer Day),

7 No Storage - TS only m

T T s | VRO, HEw —_— s o - Summer Payments are

by far the highest,

- The total net revenue
paid by all customers is
the same for the flat rate
and the efficient rate,

- Payments are higher for
customers with DD using a
flat rate structure,

- Savings in the cost of
gasoline purchased with
an EV are not included.

27
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Annual Payments by Customers

An NSF [/UCRC

Annual Cost of Purchases ($/Customer) Annual Net Payments ($/Customer)
1600 3500
1400 /_ 3000
1200 i i
Generator Capital 2500 4 Gasoline Payment
s fall_oc Storage Capital
1000
summer_0OC 2000 T Generator Capital
800 T— - s spring_OC Efall_oOC
1500 T ——
600 -—- ——  Bswinter_OC L summer_OC
— — === timum Payment 1000 +— ——  Hspring_0C
400 +— R — _
_— ssfll==F|at Payment I Hwinter_OC
- | S a0 | | am
200 _- B - —— 500
Je— - I — — —_— —
— —
0 _,_- . [— . - . — - oM 000 mees 00 BEae0 O B0 e
No Storage WH only TS only EV only All DDs No Storage WH only TS only EV only All DDs

» Customers with DD pay more if a flat rate structure is used,

» Operating costs are highest in the summer,

» EV owners save most from purchasing less gasoline all year,

» WH (all year) lowers costs more than TS (seasonal),

» Annual Net Payments for All DDs is 46% of cost for No Storage.

»  Seasonal costs correspond to 91 day seasons using linear interpolation between the four specified days,
»  The annual capital costs for DD are for specific devices and then scaled to the same energy capacity as a GE Volt,
»  The annual capital cost for:
. Generator Capital is $88/kW for demand at the summer peak (EIA),
. EV battery is $65/kWh for a capacity of 10.83 kWh (GM & GE),
. Thermal Storage is $12.50/kWh for a capacity of 10.83 kWh (MacCraken),
. Water Heating is $8.52/kWh for a capacity of 10.83 kWh (Rheem),
»  The annual cost of gasoline for a vehicle that travels 27.2 miles/day at 20 miles/gallon and $4/gallon.

Cornell University C E RTS
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PART Il: Deferrable Demand
d) Sensitivity to Wind and Ramping
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Research Question
Answer 3 fundamental questions

An NSF [/UCRC

» How to Determine the cost of Ramping as input for the SuperOPF?

» What is the sensitivity to different levels of wind penetrations

» How does compensation for ramping affects the capacity value of

wind and the system performance

First Task: Ramping Costs

> Damages to the power plant such as Thermal

Ramping costs

P Higher than steady state emissions due to
up-ramps

P Cycling costs: Full cycle -

Ramping Cost as a function of Ramp rate

> Ramp rate nonlinear direct relationship for coal
fired units -

P Ramping cost —count the number of minor load
following operations -

fatigue and Creep -

P Creep: Overheating during ramp up can

make some components to operate above
the design temperature, — accumulation

or acceleration of creep damage.
Thermal fatigue: Changes in
temperature results in mechanical failure
— most prevalent mechanical problem
as a result of ramping.

Creep-Fatigue interaction: In high
temperature, some components may
experience both fatigue and creep —
premature failure.

3

Cornell University
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Simulation Cases

Wind Inputs

» Wind/conventional
capacity: 24%

» Capacity factor of
wind: 21%

» Potential wind
generation could

supply 7.5% of daily
energy needs

-

An NSF [/UCRC

Storage
» Same locations as wind
» Steady state
conditions, cyclic
constraints
» Two threshold prices,

transversality
conditions

| Cornell University
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Results
§ Wind and Ramping Increases
of » Increases from 0 to 100% of
of max wind capacity (from 1
. to 20, 20 = 16GW)
T, » Increases from 1 to 1000x
S0 widbeeion 0 T the initial ramping (w-t)
/I\ costs (from 1 to 20, 1 =

baseline ramp) [1]

5
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Increasing Wind Penetration
Fixing the ramping cost in the system

E[Obj F]

9.1325

9.1315

9131

Objective Function
=] o o
— w — —
B 5 B £ B
5 =] w i

o
I
o

ok
ta
2
o

1 L 1 1 s 1 1 1 L L L 1 1 1 1
5 L] 7 8 g9 10 11 12 13 14 15 16 17 18 19 20
Wind Penetration

w
-
¥

Total Objective Function

Savings in energy cost offset by the increases in other internalized
costs (ancillary services, LNS)

Cornell University C E RTS
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Wear-and-tear Cost Levels

Cornell University

For Several Ramping Cost Levels

E[Obj F]

=6
=7
=8
=9
=10
==-1=11
==-1=12
—a—=13
——i1l=14
===1=15
=l = 16

Objective Function

L L L s L s 1 1 1 1 L L L L 'S
1 2 3 4 5 6 7 8 9% 10 11 12 13 14 15 16 17 18 19 20
Wind Penetration

Total Welfare
No Storage available to mitigate impacts of wind

CERTS
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Total Wind Generation, Adding Storage

Ramp Levels

| Cornell University
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| PSERC |

An NSF [/UCRC

Total Wind Generation, Adding Storage

Storage Effect
14% higher expected wind amounts dispatched (MW /day)

) 8
)2l Cornell University C E RTS
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Expected Generation Cost

10 :
8 |
6 ]
2

2 4 6 8 10 12 1 16 18 20

ent
Expensive Energy sources, savings between 9 and 15% ($1000/day)

et |
) Cornell University C ERTS
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Wholesale Cost, Same Scale

- 0.8
- 06

- |04

Network Effects
Lower wholesale cost thanks to reduced congestion

11
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LNS x VOLL, same scale

ot Served] * VOLL

Wind Penetration

Cornell University C E RTS
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Total Welfare

Storage Effect
Overall higher welfare obtained

x10°
9.16

Cornell University
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Summary
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= High penetration of renewable generation lowers the wholesale price of
energy
— BUT, increased internalized ramping costs for the conventional
generators
— Additional load following and contingency reserve needed
» Collocated Storage supports the adoption of wind, without the nasty
consequences
— Ramping provided by storage units
— Storage also provides load following and contingency reserve for
operational reliability
= Future Work
— Analyze the capital costs of storage
— Explore the role of location
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PART II: Deferrable Demand
e) DD Controlled by Aggregators

e <N
e dlni=lN=] ) .
=) ] Cornell University
Vo, WI==h) fef
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System Characteristics of the NYNE Network for

a Simulated Hot Summer Day an NSF IUCRC
NYNE GENERATING CAPACITY C_haracterl.stlcs of \.N!nd InpUtS
: Wind/conventional capacity: 24%,
Peaking (GW) 37 : - a0
Baseload (GVW 55 Av. capacity factor of wind: 38%,
aseloa (GW) E[Potential Wind Generation] (E[PWG])

Fixed Imports (GW) 3 could supply 12% of the daily energy.
TOTAL (GW) 66 Properties of Deferrable Demand
New Wind (GW) 16 For each hour the level of demand (system
Storage Energy (GWh) 34 load) is divided into conventional demand,
Peak Load (GW) 62 demand for space cooling and demand
Average Load (GW) 22 for hot water.

Case 1. No Wind: Initial base system

Case 2: Case 1 + 16 GW of wind capacity at 16 locations.

Case 31S0O: Case 2 + 34 GWh* of Deferrable Demand (DD)** at 5 load centers
Case 3 AGG: Case 3 1SO with DD controlled by aggregators at 5 load centers

* 17 GWh of Thermal Cooling (Ice Batteries) and 17 GWh of Electric Water Heating (i.e. no EVS)
** DD decouples the purchase of electricity from the delivery of an energy service to customers

= _E_I Cornell University
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The System Effects of Deferrable Demand (DD)

An NSF [/UCRC

Case 3 I1SO: Wind + Centrally Controlled DD

x 10° Expected Generation by Fuel Types

Case 2: Adding Wind Capacity -
- Lower Fuel Costs

B oclcar - Higher Ramping Costs
B hydro

[ lcoal

e Case 3 ISO: Adding DD >
mm=.na | -Slightly Lower Fuel Costs

- Lower Ramping Costs

Can Aggregators Control DD

1 6 2 18 24 Locally in response to price
ours . . .
Cost (51000/day) No Wind | AddWind | Add DD forecasts, submit bids into the
cl c2 c31S0

Generation Cost 54,628 42,021 40,958 Wh0|esa|e market and make
Ramping Cost 663 987 64| the system perform as well as
Total Operating Cost 55,292 43,008 41,422 .

E[Wind Gen.] (MWh) - 144,391 [ 150,002 it does when an ISO Controls
Max Conv. Capacity (MW) 59,538 55,033 51,235 DD Centra”y?

; {; Cornell University C E RTS
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How Should an Aggregator Respond \

to Forecasts of Energy Prices? PR —

Objective

Minimize the expected cost of purchasing energy from the grid
and deliver the energy services demanded by their customers
subject to the capacity constraints of Deferrable Demand (DD)
devices.

Deterministic Price Forecasts =2

Submit a set of deterministic quantity bids to shift purchases from
peak to off-peak periods and benefit from price arbitrage. This
strategy does NOT provide ramping services.

Stochastic Price Forecasts =2
Submit a set of price/quantity bids to shift purchases from peak to
off-peak periods and benefit from price arbitrage. This strategy
DOES provide ramping services by:
Discharging DD when the price > High Threshold
Charging DD when the price < Low Threshold

LTS
A N
1] Cornell Universit ‘ E R I S
o) -,f:."__- y
%3 b ConsorTiumFor ELECTRIC RELIABILITY TECHNOLOGY SOLUTIONS
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Aggregator's Optimum Bid Strategy

An NSF [/UCRC

24
Expected Cost 9 ?EIZ[E(PH “De+c-E(P|P, = L¢) - Prob(F < L) — min(Dy,d) - E(P:|P; > Hy) - Prob(P; > H)]
AL
t=1

i
Max Storage Capacity = subject to g,(L;, H) = Z[c - Prob(P, < L,) - e — min(Dy, d) - Prob(B: > Hp)] — (Smax — So) < 0,Vi = 1,2, ..., 23
t=1
- - J
Min Storage Capacity—=> hy(Le, Hy) = Z[min(Dt,d) -Prob(P, > H,)—c-Prob(B, < L,)-€]l — Sy < 0,¥j = 1,2, ..., 23
t=1
24

k(Li, Hy) = Z[min[Dt,d) -Prob(P; > Hy) —c-Prob(P. < L;)-e] =0
t=1

E[Sz4] = S =

Price
Given stochastic forecasts of energy prices

for the 24 hour planning horizon, the aggregator
determines bids to buy energy to minimize the S
expected cost of purchasing energy from the
grid for space cooling and hot water:

- Low Threshold Price for Charging, L,

—> High Threshold Price for Discharging, H,

Quantity
D,-d 0 D, D, +¢

ﬁ: @ Cornell University C E RTS
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Optimal Thresholds Analysis

An NSF [/UCRC

Kuhn-Tucker Conditions

oL _of BgI
la) — Zi -0
() 5 =35 T . 3L, aLt
[=
23 23
aL  af ag; on, ok s -
1b) — =+ )y, +Z.1-—+ " —0
AD) o ~am, T LFam T L Mam, TV am,
i=t j=t Ht = — Wi — ‘;Lj —y

- —
(2a) gL, H,) <0,¥i = 1,2, ...,23 : /

(2b) h,(L,, H) =0,Vj =1,2, ..., 23

23 23
’ Lt=—e-Zpi—le—}f =e-H;
(2¢) k(Le, Hy) = 0 i=t j=t

(3a) wg; (L, He) = 0, = 0, Wi =1,2,..,23

(3b) Ly (L, Hy) = 0,4, 2 0,¥) = 1,2,...,23

= Optimal low threshold equals optimal high threshold
multiplied by efficiency rate of the storage device.

» |f energy capacity constraints are never binding, then
optimal thresholds will be the same across 24 hours.

Cornell University C E RTS
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E[Dispatch Profiles] for Centralized and

Decentralized Control of DD
Centralized Control Decentralized Control
by an ISO (Case 3 1SO) by Aggregators (Case 3 AGG)
x 10" Expected Generation by Fuel Types x 10" Expected Generation by Fuel Types
T T T 6 : : r

B uclear B o clear
I 1y diro B a0
[ coal [ coal
:] ng ] ng
[ Toail [ Joil

I ind

w/o DD

B \ind

w/o DD

1 6 12 18 24 1 6 12 18 24
Hours Hours

The E[Dispatch Profiles] and the ramping services provided by
DD are very similar for centralized and decentralized control.

e Iz,
& SN
1 Cornell University ( [ R I ;
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The Optimal Dispatch Patterns in the Five Intact
System States for the Peak Hour

An NSF [/UCRC

No DD (Case 2)

DD controlled by ISO (Case 3 ISO)

Differences in the Optimal Dispatch for the Peak Hour

MW Case 2: Wind Only
1,000

800 1

600 1

200 1

200

BB = m m

-200 3 ———
- . —
600 1

-800

1000 System States

® AWind B AConventional ®WindSpilled ®ADD

DD controlled by Aggregators |

- Deterministic price forecasts

Mw

Differences in the Optimal Dispatch for the Peak Hour
Case 3 ISO: Wind + DD (central control)

1,000
800

400
200

-200
-400

-800

WIIII

. : ' 5

-1,000

DD

System States

B AWind ™A Conventional ® Wind Spilled ADD

controlled by Aggregators Il

- Stochastic price forecasts

Differences in the Optimal Dispatch for the Peak Hour

mMw Case 3 AGG: Wind + DD (deterministic bids)
1,000

800

600 1

400 -

200 A

0 1 T T T

-200 4 3

-400 1 . [
-600 A

: - E
-1,000
-1,200

System States
HAWind B A Conventional B Wind Spilled ADD

MW

1,000
800

-200
-400

-800
-1,000
-1,200

400 1
200 7

Differences in the Optimal Dispatch for the Peak Hour
Case 3 AGG: Wind + DD (flexible bids)

=l

System States

B

B AWind B A Conventional B Wind Spilled

A DD

Cornell University
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E[Stored Energy] Violates Capacity Bounds with
Bids Submitted by an Aggregator NS IUCRG

Boston DD for Cooling (H=83.6 L=71.9) Boston DD for Water Heating (H=73.5 L=66.9)
4000 000
3000 - 4000
2000 3000 //&\
- =z ™~

.51000 ~—_ _—— 2000 7 \\

E 0 T T T T T T T T T T T T T T ’ T T T T T T T T 1 1000 / "‘\..-‘ /
1000 01234567 89101112131415164718192021222324 o= "I"""- S—
9000 . 1234567 8 91011121314151617 181920212223 24

-1000
-3000 Hour 5000
NYC DD for Cooling (H=98.7 L=84.9) NYC DD for Water Heating (H=93.1 L=84.7)

2000 8000
6000 6000 =
5000 4000 __Z—-— — — ~— Z
4000 — g =~ 7

——— " >~ , 2000 ~ -
3000 — \ 7 ~— —— ———
2000 ‘-}‘" / '/ 0 T T T T T T T T T T T T T T T T T T T T T T T 1
1000 E— S oop @ 12345678 9101112131415161718192021222324

U T T T T T T T T T T T T T T T T T T T T T T T 1 )
012345678 9101112131415161718192021222324 4000
= Upper Bound ——Case 3150 Case 3 AGG = -Aggregator Plan

Even though the aggregators plans fall within the capacity bounds, the actual
dispatch by the ISO can violate them

: | Cornell University C E RTS
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Summary
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» Deferrable Demand (DD) controlled locally by aggregators can help the
system in the same way as centrally controlled DD, if:
— Aggregators have access to stochastic forecasts of energy prices,
— Aggregators minimize E[Cost of Purchasing Energy from the Grid]
subject to meeting the delivery of DD services to customers,
— Aggregators submit elastic demand curves and thus can be modeled
as negative generators (rather than as fixed load).
» There is no guarantee that the dispatch of DD by an ISO will respect the
energy capacity constraints of DD:
— Need accurate forecasts of the price distribution (normal,
triangular, shifted lognormal distributions have been tested),
— 1SO should use arolling horizon so that aggregators can adjust their
bids using updated information each hour.
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Papers and Panels
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Papers

1. Alberto J. Lamadrid, Timothy D. Mount, Wooyoung Jeon and Hao Lu, “Is Deferrable Demand an
Effective Alternative to Upgrading Transmission Capacity?”, Forthcoming, Journal of Energy Engineering,
2014.

2. Wooyoung Jeon, Jung Youn Mo and Timothy D. Mount, “Developing a Smart Grid that Customers can
Afford: The Impact of Deferrable Demand”, Forthcoming, Journal of Energy Economics, 2014.

3. Alberto J. Lamadrid, Timothy D. Mount, Wooyoung Jeon and Hao Lu, “Barriers to Increasing the Role of
Demand Resources in Electricity Markets”, Proceedings of the 47" Annual IEEE HICSS Conference,
January 2014.

4. Hao Lu, Wooyoung Jeon, Alberto J. Lamadrid, Timothy D. Mount, and Jung Youn Mo, “Evaluating the
Effectiveness of Demand Aggregators in Accommodating the Uncertainty of Wind Generation”,
Proceedings of the 33" Annual CRRI Eastern Conference, May 2014.

5. Wooyoung Jeon, Jung Youn Mo, Alberto J. Lamadrid, Hao Lu, Timothy D. Mount, “Modeling Stochastic
Wind Generation and the Implications for System Costs”, Proceedings of the 27" Annual CRRI Western
Conference, June 2014.

6. Alberto J. Lamadrid et al. “Stochastically Optimized, Carbon-Reducing Dispatch of Storage, Generation,
and Loads". Transactions on Power Systems, revise and resubmit

Panel
1. Alberto J. Lamadrid and Jim Price (California ISO) co-chairs, Panel on “Multistage Optimization and its
Impact on Electricity Markets”, 2014 PES General Meeting, Washington DC, July 2014.
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Presentations and Working Papers
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Presentations

1. Tim Mount, “Barriers to Increasing the Role of Demand Resources in Electricity Markets”, Invited
Lecture at Imperial College, London UK, October, 2013.

2. Alberto Lamadrid, “Energy Storage Systems, Stochastic Optimization and Robust Control”, INFORMS
Annual Meeting, Minneapolis MN, October, 2013.

3. Eilyan Bitar and Timothy D. Mount, “The System Benefits of Managing Demand Flexibility and Storage
Efficiently.” PSERC Public Webinar, March, 2014.

4. Alberto J. Lamadrid, Timothy D. Mount, Wooyoung Jeon and Hao Lu, “A Squirrel's Dilemma: The Value
of Distributed Storage in the Transition to a Low-Carbon Electric Grid”, 37t Conference of the
International Association of Energy Economists, New York, NY, June 2014.

5. Alberto J. Lamadrid and M. Mohsen Moarefdoost, “Mathematical Formulation for Generation, Storage
and Dispatch in Electricity Systems with Ramping Constraints”, Proceedings of the 2014 PES General
Meeting, Washington DC, July 2014.

Working Papers

1. Lamadrid, A. J., Moarefdoost, M. “Generation and Dispatch in Electricity Systems with Ramping
Constraints”, 2014.

2. Lamadrid, A. J., Moarefdoost, M, Luis F. Zuluaga, “Chance Constrained Optimization in Electricity
Networks with Ramping Constraints”, 2014.

3. Jeon, W., Lamadrid, A.J., Mount, T. and Lu, H. “On The Value of Deferrable Demand for Customers”,
2014
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Thank you
Questions?
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