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PART I: Stochastic Inputs  
a) Simulating Wind Power and Load  
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North Eastern Test Network (NYNE)  

 Reduced NPCC System (Allen, Lang and Ilic (2008)) 
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16 Wind Site Clusters  
(Derived from the EWITS data from NREL ) 
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Each cluster was determined by 
a principal components analysis 
and used to define a wind farm at 
a node on the NYNE network 
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Correlations among the 16 Wind and 7 Load Sites 

1. High positive correlations 
among all seven load sites, 
 

2. Small negative correlations  
between all load and wind 
sites, 
 

3. Mixed positive correlations 
among the wind sites, 
generally higher in-state. 

Order of Sites: 
     1-7      NE Wind 
     8-16    NY Wind 
     17-19  NE Load 
     20-23  NY Load 
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Uncertainty of Load and Wind Speed 
(New York City as an example)  

Load in NYC Wind Speed near NYC 

16 ARMAX models estimated for hourly Temperature = f(Seasonal Cycles) 
16 ARMAX models estimated for hourly Log[Wind Speed + 1] = f(Temperature, Seasonal Cycles) 
  7 ARMAX models estimated for hourly Log[Load] = f(CDD, HDD, Seasonal Cycles) 
   Load model estimates Temperature-Sensitive Load and Non Temperature-Sensitive Load 
 Simulate hourly profiles of Wind Speed and Load for any specified day given a forecast of Temperature 

Dependent Variable Temperature Log[Wind Speed + 1] Log[Load] 

OLS R2 79% 8% 90% 

ARMAX Pseudo R2 99% 75% 99% 
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Percentage Coefficients of Variation for  
Load (Region 6) and Wind Power (Area 15) Inputs 

Econometric Models Simulated Stochastic Inputs 

%CV = % Coefficient of Variation  
         = 100xStandard Deviation/Mean 

(St. Dev. of Log[Load])x10  
           ≈ St. Dev. of Log[Wind Speed + 1] 
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Input Model for the Stochastic Behavior 
of Potential Wind Generation 
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Steps: 
1. Simulate a sample of daily wind 

speeds for a specified day 
conditionally on forecasted 
temperature using the 
econometric models for 16 
sites in New York State and 
New England.  

2. Convert wind speed to potential 
wind power, rank the system 
total and assign the sample 
observations to bins. 

3. Use the assigned observations  
to estimate the transition 
probabilities from hour t-1 to 
hour t for t = 1,2,….,24 
 

Four discrete intact system states each hour 
 Sixteen transitions from one hour to the next 
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Capabilities of the MATLAB Functions 
Used to Simulate Wind Power and Load 

 
• The following MATLAB functions make it possible to: 

– Simulate a sample of hourly realizations of wind speed at 16 sites and load in 7 regions in New York 
State and New England for any specified day of the year,  

– Transform these simulated values into the stochastic inputs used by the multi-period SuperOPF. 
• SimNPCCWindLoad()   

– Generates a time series of hourly realizations of wind speed and load using estimated ARMAX models 
for 16 wind sites and 7 load regions, 

– The number of daily realizations (sample size), the starting hour, and the number of hours in each daily 
realization can be customized for any specified day of the year. 

• ConvertWindToPower()  
– Converts the simulated hourly wind speeds to the potential wind power from a wind farm at each site 

using the methodology described in Norgaard (2004). 
• CreateScenarios()  

– Generates wind power and load scenarios for each hour using the bin method to cluster the simulated 
hourly realizations ranked by the total potential wind power for all 16 sites, 

– Calculates the transition probabilities from one hour to the next hour for all scenarios,  
– Applies the same bin allocations to each wind site and load region and computes the mean value for 

each bin, 
– The number of scenarios and the probability for each scenario bin can be customized. 

• SetupWindLoad() 
– Sets up the code that calls the three MATLAB functions described above,  
– Creates the stochastic input files for potential wind power and load in the format used by the SuperOPF, 
– Creates plots of the wind power and load realizations and the scenario profiles (PlotWind.m, 

PlotLoad.m). 

10 



An NSF I/UCRC 

 
 

PART I: Stochastic Inputs  
b) The Effects on System Costs 
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2nd Generation Multi-Period SuperOPF 

• Includes:  
• Multi-Period Optimization  
• Storage Capacity  
• Stochastic Wind Generation 
• Ramping Costs 
• Different Reserves (contingency, load following) 
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System Characteristics of the NENY Network  
for a Simulated Hot Summer Day (Cases 1 & 2) 
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Case 1:   No Wind: Initial base system 
Case 2:   Case 1 + 16 GW of wind capacity at 16 locations: 
         a:  Deterministic inputs for wind and load  
                        No Uncertainty,  
         b:   Stochastic inputs for wind and load calibrated at the system level 
                        Medium Uncertainty,  
         c:   Stochastic inputs for wind and load calibrated at the site level  
                        High Uncertainty.  
 
 

Characteristics of Wind Inputs 
Wind/conventional capacity: 24%, 
Av. capacity factor of wind: 38%, 
E[Potential Wind Generation] (E[PWG])  
could supply 12% of the daily energy. 

NYNE GENERATING CAPACITY 
 Peaking (GW) 37 
 Baseload (GW) 26 
 Fixed Imports (GW) 3 
 TOTAL (GW) 66 
 New Wind (GW) 16 
 Storage Capacity 
(GW) varying 
 Storage Energy (GWh) 34  
 Peak Load (GW) 62 
 Average Load (GW) 52 
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Changes in Total Operating Costs  
Different Levels of Uncertainty for Load and Wind Power 

I    Much lower Generation Costs & slightly higher Ramping Costs 
II   Slightly Higher Ramping Costs & some PWG spilled (higher Gen. Costs) 
III  Even Higher Ramping Costs & more PWG spilled (higher Gen. Costs) 
 
OVERALL EFFECT OF UNCERTAINTY ON COST  IS SMALL 
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  I                   II                  III      

I   : Adding Wind Capacity, (c2a – c1) 
II  : No Uncertainty  Medium Uncertainty (c2b – c2a) 
III : No Uncertainty  High Uncertainty (c2c – c2a) 

E[ $1000/day]  
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The Timing of the Forecasts Used as 
Inputs for the Optimization 

The conclusions so far: 
 Greater uncertainty about the future levels of Load and Potential Wind 

Generation (PWG) has the expected effects on system operations:  
 Increases the reserve capacity needed for ramping,   
 Spills more of the PWG,  

 Greater uncertainty only leads to a small increase in the E[Total Daily 
System Cost], 

 Although our previous research found a much larger difference in system 
costs between deterministic PWG and stochastic PWG, the earlier analysis 
used a sample of actual summer days instead of econometric forecasts 
to represent the level of uncertainty, 

 The useful information from the ARMA models of the autocorrelations in 
the simulations of Load and PWG only lasts for 8-10 hours ahead. 

Next step: 
 Compare the effects of using forecasts made SIX hours ahead (like a Day-

Ahead Market) with forecasts made ONE hour ahead (like Cases 2a-c) on 
the optimal system operations in Hour 1. 
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The Optimal Dispatch Patterns in the Five Intact 
System States for Hour 1 using Different Forecasts 

Δ = Deviation around the Mean for Hour 1, (P{States 1 and 5} = 0) 
Range of Conventional Generation in Hour 1  
= Ramping Capacity Needed = 192 MW 

Δ = Deviation around the Mean for Hour 1 
Range of Conventional Generation in Hour 1  
= Ramping Capacity Needed = 1514 MW 

Using the updated forecasts made ONE hour ahead requires committing only  
192/1514 ≈ 1/8th of the reserve capacity needed for ramping in Hour 1 
 A potential benefit of using a rolling horizon for market operations. 
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PART II: Deferrable Demand 

a) Model Specifications 
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SPECIFICATIONS FOR DEFERRABLE 
DEMAND 

 Thermal Storage, Space Conditioning (Total Capacity 17 GWh) 
 Total potentially deferrable demand is 34 GWh on the hottest (coldest) day, 
 Storage capacity is 30 MWh/unit (86% efficient, manufactured by Calmac), 
 Maximum hourly energy delivered for space conditioning is proportional to TSL*. 

 Electric Hot Water Heating (Total Capacity 17 GWh) 
 Total potentially deferrable demand is 34 GWh per day, 
 The size of each water tank is 80 gallons with a heating capacity (recovery rate) of 20 

GPH (equivalent to 4.5 kW/hour) (91% efficient, manufactured by Rheem), 
 Maximum energy of the hot water used each hour is proportional to N-TSL*. 

 Electric Vehicles (Total Capacity 17 GWh) 
 Total deferrable demand is less than 17 GWh per day (the average number of miles 

driven each day < the maximum electric range) , 
 Usable battery capacity is 10.8 kWh/vehicle (90% efficient, lithium-ion in GM Volt) 
 Average charging power is 3.31 kW (Level1/Level2 chargers = 70%/30%), 
 Charging is restricted by the Commuter-at-Home Profile (determines the # of vehicles 

attached to grid each hour) and the Commuter-Driving Profile (determines how much 
energy is used for transportation each hour). 

• Temperature Sensitive Load (TSL) and Non-Temperature Sensitive Load (N-TSL) are  
    derived from the estimated econometric models of demand.  

18 
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Daily Profiles of (Deferrable) Energy Services 
Demanded by Customers for Four Seasons* 

* The Energy Demanded by Customers Each Hour for Specific Energy Services 
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The Structure of the SuperOPF 
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PART II: Deferrable Demand 

b) DD Controlled by an ISO 
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System Characteristics of the NENY Network for  
Simulated Days in Different Seasons 
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Case 1:    No Wind: Initial base system, 
Case 2c:  Case 1 + 16 GW of wind capacity at 16 locations, 
Case 3a:  Case 2c + 51 GWh of DD capacity at 5 load centers: 
   - 17 GWh of Storage for Space Cooling* or Heating* (Proportional to TSL**)   
   - 17 GWh of Storage for Hot Water*** (Proportional to N-TSL**) 
   - 17 GWh of Storage for Electric Vehicles (10% penetration) 
 
*   The corresponding amount of potential DD = 2 x energy capacity of storage on the hottest/coldest day 
**  Temperature Sensitive Load (TSL) and Non-Temperature Sensitive Load (N-TSL) 
*** The corresponding amount of potential DD = 2 x energy capacity of storage every day 

Characteristics of Wind and Load 
Same installed wind capacity every day with 
Potential Wind Generation (PWG) and Load 
simulated for each specified day.  
Properties of Deferrable Demand (DD) 
For each hour, the forecasted Load is divided into 
conventional demand, DD for space 
conditioning (cooling or heating), and DD for hot 
water. DD for transportation is an additional 
source of demand. 

NYNE GENERATING CAPACITY 
 Peaking (GW) 37 
 Baseload (GW) 26 
 Fixed Imports (GW) 3 
 TOTAL (GW) 66 
 New Wind (GW) 16 
 Storage Capacity (GWh) 51  
 Peak Load (GW) Varies by Day  
 Average Load (GW) Varies by Day 
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The Effects of Deferrable Demand on System Costs 
for the Peak Summer Day  No Surprises 

     Case 1: No Wind          Case 2c: + Wind           Case 3a: + DD 
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PART II: Deferrable Demand 
c) Cost Effects for Customers 
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Five Different Types of “Customer” 

1. No DD capacity (No Storage) 
2. Water Heating only (WH) 
3. Thermal (Hot and Cold) Storage only (TS) 
4. Electric Vehicle only (EV) 
5. All three types of DD (All DDs)  
 
- Based on Case 3a (Base Case 1 + Wind + DD)  
- The total energy capacity for electric vehicles (17 GWh) corresponds to a 10% penetration 

rate for registered vehicles, and this determines the total number of customers with an EV 
(1.5 million) and the total number of customers (15 million).  Every customer is assumed to 
have identical daily needs for all non-transportation electric energy services.  The 
customers are assigned to five load centers in proportion to the total daily loads at those 
locations in the summer, and the hourly patterns of demand for electric energy services 
vary by location.   

- The energy storage capacities for a customer with TS only or with WH only are calibrated 
to be the same as the maximum useable energy capacity of an EV.  This simplifies making 
comparisons among different types of customer. 

- The results presented for different types of customer correspond to the system average for 
all five locations.  

25 



An NSF I/UCRC 

Hourly Patterns of Energy Purchases by 
Customers in Different Seasons (kWh) 

Summer Day (peak) Fall Day 

Winter Day Spring Day 
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Net Payments by Customers using Efficient 
Prices versus Flat Energy Prices ($/day) 

Summer Day (-2  12 $/day) Fall Day (-1  2.5 $/day) 
 

Winter Day (-1  2.5 $/day) 
 

Spring Day (-1  2.5 $/day) 

 

- Capital Payments for 
Generating Capacity occur 
only for the  Annual 
System Peak Load when 
Adequacy Standards are 
set ($1.76/kW for demand 
at the peak hour in the 
Summer Day), 
 
- Summer Payments are 
by far the highest, 
 
- The total net revenue 
paid by all customers is 
the same for the flat rate 
and the efficient rate, 
 
- Payments are higher for 
customers with DD using a 
flat rate structure,  
 
- Savings in the cost of 
gasoline purchased with 
an EV are not included. 
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Annual Payments by Customers 

 Seasonal costs correspond to 91 day seasons using linear interpolation between the four specified days, 
 The annual capital costs for DD are for specific devices and then scaled to the same energy capacity as a GE Volt, 
 The annual capital cost for: 

• Generator Capital is $88/kW for demand at the summer peak (EIA), 
• EV battery is $65/kWh for a capacity of 10.83 kWh (GM & GE), 
• Thermal Storage is $12.50/kWh for a capacity of 10.83 kWh (MacCraken), 
• Water Heating is $8.52/kWh for a capacity of 10.83 kWh (Rheem), 

 The annual cost of gasoline for a vehicle that travels 27.2 miles/day at 20 miles/gallon and $4/gallon.   

 Customers with DD pay more if a flat rate structure is used, 
 Operating costs are highest in the summer, 
 EV owners save most from purchasing less gasoline all year, 
 WH (all year) lowers costs more than TS (seasonal), 
 Annual Net Payments for All DDs is 46% of cost for No Storage. 
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PART II: Deferrable Demand 

d) Sensitivity to Wind and Ramping  
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Summary 

 High penetration of renewable generation lowers the wholesale price of 
energy 

− BUT, increased internalized ramping costs for the conventional 
generators 

− Additional load following and contingency reserve needed 
 Collocated Storage supports the adoption of wind, without the nasty 

consequences 
− Ramping provided by storage units 
− Storage also provides load following and contingency reserve for 

operational reliability 
 Future Work 

− Analyze the capital costs of storage 
− Explore the role of location 
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PART II: Deferrable Demand 
e) DD Controlled by Aggregators 

 

42 



An NSF I/UCRC 

System Characteristics of the NYNE Network for  
a Simulated Hot Summer Day 

43 

Case 1:           No Wind: Initial base system 
Case 2:           Case 1 + 16 GW of wind capacity at 16 locations. 
Case 3 ISO:    Case 2 + 34 GWh* of Deferrable Demand (DD)** at 5 load centers  
Case 3 AGG:  Case 3 ISO with DD controlled by aggregators at 5 load centers  
 
*  17 GWh of Thermal Cooling (Ice Batteries) and 17 GWh of Electric Water Heating (i.e. no EVs) 
** DD decouples the purchase of electricity from the delivery of an energy service to customers 

Characteristics of Wind Inputs 
Wind/conventional capacity: 24%, 
Av. capacity factor of wind: 38%, 
E[Potential Wind Generation] (E[PWG])  
could supply 12% of the daily energy. 
Properties of Deferrable Demand 
For each hour the level of demand (system 
load) is divided into conventional demand, 
demand for space cooling and demand 
for hot water. 

NYNE GENERATING CAPACITY 
 Peaking (GW) 37 
 Baseload (GW) 26 
 Fixed Imports (GW) 3 
 TOTAL (GW) 66 
 New Wind (GW) 16 
 Storage Energy (GWh) 34  
 Peak Load (GW) 62 
 Average Load (GW) 52 
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The System Effects of Deferrable Demand (DD) 

Case 3 ISO: Wind + Centrally Controlled DD  

 
Case 2: Adding Wind Capacity    
- Lower Fuel Costs   
- Higher Ramping Costs 
 
Case 3 ISO: Adding DD   
- Slightly Lower Fuel Costs  
- Lower Ramping Costs 
 
Can Aggregators Control DD 
Locally in response to price 
forecasts, submit bids into the 
wholesale market and make 
the system perform as well as 
it does when an ISO Controls 
DD Centrally? 
  
 44 
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How Should an Aggregator Respond  
to Forecasts of Energy Prices? 

Objective 
Minimize the expected cost of purchasing energy from the grid 
and deliver the energy services demanded by their customers 
subject to the capacity constraints of Deferrable Demand (DD) 
devices. 
 
Deterministic Price Forecasts  
Submit a set of deterministic quantity bids to shift purchases from 
peak to off-peak periods and benefit from price arbitrage.  This 
strategy does NOT provide ramping services. 
 
Stochastic Price Forecasts  
Submit a set of price/quantity bids to shift purchases from peak to 
off-peak periods and benefit from price arbitrage.  This strategy 
DOES provide ramping services by: 
 Discharging DD when the price > High Threshold 
 Charging DD when the price     < Low Threshold 
  

45 
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Aggregator's Optimum Bid Strategy 

Given stochastic forecasts of energy prices 
for the 24 hour planning horizon, the aggregator 
determines bids to buy energy to minimize the 
expected cost of purchasing energy from the 
grid for space cooling and hot water: 
  Low Threshold Price for Charging, Lt  
  High Threshold Price for Discharging, Ht 

Expected Cost  

Max Storage Capacity  

Min Storage Capacity 

E[S24] = S0  
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Optimal Thresholds Analysis 

 Optimal low threshold equals optimal high threshold 
multiplied by efficiency rate of the storage device. 

 If energy capacity constraints are never binding, then 
optimal thresholds will be the same across 24 hours. 
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E[Dispatch Profiles] for Centralized and 
Decentralized Control of DD 

Centralized Control 
by an ISO (Case 3 ISO) 

Decentralized Control 
by Aggregators (Case 3 AGG) 

The E[Dispatch Profiles] and the ramping services provided by 
DD are very similar for centralized and decentralized control. 
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The Optimal Dispatch Patterns in the Five Intact 
System States for the Peak Hour 

No DD (Case 2) DD controlled by ISO (Case 3 ISO) 
  

DD controlled by Aggregators I 
- Deterministic price forecasts 

DD controlled by Aggregators II 
- Stochastic price forecasts 
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 E[Stored Energy] Violates Capacity Bounds with 
Bids Submitted by an Aggregator 

Even though the aggregators plans fall within the capacity bounds, the actual 
dispatch by the ISO can violate them 
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Summary 

 Deferrable Demand (DD) controlled locally by aggregators can help the 
system in the same way as centrally controlled DD, if: 

− Aggregators have access to stochastic forecasts of energy prices, 
− Aggregators minimize E[Cost of Purchasing Energy from the Grid] 

subject to meeting the delivery of DD services to customers, 
− Aggregators submit elastic demand curves and thus can be modeled 

as negative generators (rather than as fixed load). 
 There is no guarantee that the dispatch of DD by an ISO will respect the 

energy capacity constraints of DD: 
− Need accurate forecasts of the price distribution (normal, 

triangular, shifted lognormal distributions have been tested), 
− ISO should use a rolling horizon so that aggregators can adjust their 

bids using updated information each hour. 
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Papers and Panels 

Papers 
1. Alberto J. Lamadrid, Timothy D. Mount, Wooyoung Jeon and Hao Lu, “Is Deferrable Demand an 
Effective Alternative to Upgrading Transmission Capacity?”, Forthcoming, Journal of Energy Engineering, 
2014.  
2. Wooyoung Jeon, Jung Youn Mo and Timothy D. Mount, “Developing a Smart Grid that Customers can 
Afford: The Impact of Deferrable Demand”, Forthcoming, Journal of Energy Economics, 2014.  
3. Alberto J. Lamadrid, Timothy D. Mount, Wooyoung Jeon and Hao Lu, “Barriers to Increasing the Role of 
Demand Resources in Electricity Markets”, Proceedings of the 47th Annual IEEE HICSS Conference, 
January 2014.  
4. Hao Lu, Wooyoung Jeon, Alberto J. Lamadrid, Timothy D. Mount, and Jung Youn Mo, “Evaluating the 
Effectiveness of Demand Aggregators in Accommodating the Uncertainty of Wind Generation”, 
Proceedings of the 33nd Annual CRRI Eastern Conference, May 2014. 
5. Wooyoung Jeon, Jung Youn Mo, Alberto J. Lamadrid, Hao Lu, Timothy D. Mount, “Modeling Stochastic 
Wind Generation and the Implications for System Costs”, Proceedings of the 27th Annual CRRI Western 
Conference, June 2014.  
6. Alberto J. Lamadrid et al. “Stochastically Optimized, Carbon-Reducing Dispatch of Storage, Generation, 
and Loads". Transactions on Power Systems, revise and resubmit 
 
Panel 
1. Alberto J. Lamadrid and Jim Price (California ISO) co-chairs, Panel on “Multistage Optimization and its 
Impact on Electricity Markets”, 2014 PES General Meeting, Washington DC, July 2014. 
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Presentations and Working Papers 

Presentations 
1. Tim Mount, “Barriers to Increasing the Role of Demand Resources in Electricity Markets”, Invited 
Lecture at Imperial College, London UK, October, 2013.  
2. Alberto Lamadrid, “Energy Storage Systems, Stochastic Optimization and Robust Control”, INFORMS 
Annual Meeting, Minneapolis MN, October, 2013.   
3. Eilyan Bitar and Timothy D. Mount, “The System Benefits of Managing Demand Flexibility and Storage 
Efficiently.” PSERC Public Webinar, March, 2014. 
4. Alberto J. Lamadrid, Timothy D. Mount, Wooyoung Jeon and Hao Lu, “A Squirrel’s Dilemma: The Value 
of Distributed Storage in the Transition to a Low-Carbon Electric Grid”, 37th Conference of the 
International Association of Energy Economists, New York, NY, June 2014.  
5. Alberto J. Lamadrid and M. Mohsen Moarefdoost, “Mathematical Formulation for Generation, Storage 
and Dispatch in Electricity Systems with Ramping Constraints”, Proceedings of the 2014 PES General 
Meeting, Washington DC, July 2014. 
 
Working Papers 
1. Lamadrid, A. J., Moarefdoost, M. “Generation and Dispatch in Electricity Systems with Ramping 
Constraints”, 2014. 
2. Lamadrid, A. J., Moarefdoost, M, Luis F. Zuluaga, “Chance Constrained Optimization in Electricity 
Networks with Ramping Constraints”, 2014. 
3. Jeon, W., Lamadrid, A.J., Mount, T. and Lu, H. “On The Value of Deferrable Demand for Customers”, 
2014 
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Questions? 

 

55 


	R&M Project 2A: �Evaluating the Effects of Managing Controllable Demand and Distributed Energy Resources Locally on System Performance and Costs 
	�� 	�	PART I:   Stochastic Inputs�		- Simulating Wind Power and Load�		- The Effects on System Costs�	PART II:  Deferrable Demand (DD)			- Model Specifications �		- DD Controlled by an ISO�		- Cost Effects for Customers�		- Sensitivity to Wind and Ramping �		- DD Controlled by Aggregators�	PART III: Publications����
	��PART I: Stochastic Inputs �a) Simulating Wind Power and Load ��
	North Eastern Test Network (NYNE) �
	16 Wind Site Clusters �(Derived from the EWITS data from NREL )
	Correlations among the 16 Wind and 7 Load Sites
	Uncertainty of Load and Wind Speed�(New York City as an example) 
	Percentage Coefficients of Variation for �Load (Region 6) and Wind Power (Area 15) Inputs
	Input Model for the Stochastic Behavior of Potential Wind Generation
	Capabilities of the MATLAB Functions Used to Simulate Wind Power and Load
	��PART I: Stochastic Inputs �b) The Effects on System Costs��
	2nd Generation Multi-Period SuperOPF
	System Characteristics of the NENY Network �for a Simulated Hot Summer Day (Cases 1 & 2)
	Changes in Total Operating Costs �Different Levels of Uncertainty for Load and Wind Power
	The Timing of the Forecasts Used as Inputs for the Optimization
	The Optimal Dispatch Patterns in the Five Intact System States for Hour 1 using Different Forecasts
	�PART II: Deferrable Demand�a) Model Specifications�
	SPECIFICATIONS FOR DEFERRABLE DEMAND
	Daily Profiles of (Deferrable) Energy Services Demanded by Customers for Four Seasons*
	The Structure of the SuperOPF
	�PART II: Deferrable Demand�b) DD Controlled by an ISO�
	System Characteristics of the NENY Network for �Simulated Days in Different Seasons
	The Effects of Deferrable Demand on System Costs for the Peak Summer Day  No Surprises
	�PART II: Deferrable Demand�c) Cost Effects for Customers�
	Five Different Types of “Customer”
	Hourly Patterns of Energy Purchases by Customers in Different Seasons (kWh)
	Net Payments by Customers using Efficient Prices versus Flat Energy Prices ($/day)
	Annual Payments by Customers
	�PART II: Deferrable Demand�d) Sensitivity to Wind and Ramping �
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Summary
	�PART II: Deferrable Demand�e) DD Controlled by Aggregators�
	System Characteristics of the NYNE Network for �a Simulated Hot Summer Day
	The System Effects of Deferrable Demand (DD)
	How Should an Aggregator Respond �to Forecasts of Energy Prices?
	Aggregator's Optimum Bid Strategy
	Optimal Thresholds Analysis
	E[Dispatch Profiles] for Centralized and Decentralized Control of DD
	The Optimal Dispatch Patterns in the Five Intact System States for the Peak Hour
	 E[Stored Energy] Violates Capacity Bounds with Bids Submitted by an Aggregator
	Summary
	�PART III: PUBLICATIONS�
	Papers and Panels
	Presentations and Working Papers
	�Thank you�Questions?�

