High Pressure PEM Electrolysis
Status, Key Issues, and Challenges

Monjid Hamdan
Director of Engineering
Giner, Inc.
89 Rumford Ave,
Newton, Ma. 02466
High cost of compression is making it difficult for all hydrogen production pathways to match the energy cost of gasoline…

Advantages of High Pressure PEM Electrolysis

- Eliminates one or more stages of mechanical compression
- Reduces system complexity
 - Lower drying requirements
- Low maintenance
 - No moving parts
 - No contaminants
- Permits hydrogen generation at user end-site
- Cross-cutting technology, applicable to Electrochemical Hydrogen Compressors

Advancements in Membrane, Stack, & System required for commercial viability

CSD Costs
Refueling Station (2011 Technology)¹

Membrane Challenges: High Pressure Operation

- **Mechanical Strength**
 - Membrane creep
 - Loss of Stack Seals
 - Membrane extrusion into fluid ports
 - Hardware leakage (internal & external)
 - There is a need to improve strength without adversely impacting conductivity

- **Chemical Durability**
 - Membrane degradation increases with operating pressure
 - Significant increase in chemical degradation rate under high pressure operation

- **Efficiency**
 - High back diffusion
 - Thin membranes have low resistance, allowing efficient operation at high current densities. Drawback is high back diffusion.
 - Similar faradaic losses in PEM fuel cells and electrochemical H₂ compressors under same operating conditions & membrane selection
 - Need to synthesize new low EW ionomers to meet new performance targets
 - Membranes with high conductivity and low permeability needed
Membrane Efficiency

Performance Status of Current PEM Technology

- Combined effect of iR-losses, Nernstian Penalty, Catalytic Activity, Ionic conductivity, and Back diffusion
- Increased power consumption due to gas permeation at high operating pressure

- 6,250 psia (H35 Refueling)
- 12,688 psia (H70 Refueling)

- 300 psia

- ~5 kWh/kg
- ~3 kWh/kg
- 10x Conductivity/Perm. Improvement

1100EW Membrane, 50°C Differential Pressure

Membrane Thickness (mils)

- 2
- 5
- 7
- 10
- 12
- 20
Stack Hardware

Future Challenges

- Increase hardware capability for high pressure applications (H35 and H70 refueling)
 - Scale-up: Increased output
 - Increase active area/number of cells
 - Material strength:
 - Conductive anode/cathode membrane support structures with high yield strength
 - Improved sealing:
 - Material creep (vs. time, pressure, & temp cycles)

- Reduce stack cost
 - The repeating cell unit comprises >90% of electrolyzer stack cost
 - Reduce labor/material requirements
 - Anode support structure now dominates cost of the electrolyzer stack
 - High tolerance requirements of cell components increases manufacturing cost
 - Improved chemical stability of cell components (H₂ embrittlement)
 - Long term endurance testing & validation (5,000+ Hours)
System Challenges

Internal/External Challenges

- Increasing electrolyzer pressure leads to system simplification but requires higher cost BOP components
- Innovative system component development required
 - Hydrogen dryers
 - Gas-phase separators
 - Level sensing
- Extended durability testing/validation
 - Full optimization studies
- Hydrogen safety codes and standards: Collaborators such as NIST or national laboratories, needed to help in standardizing the process
Economic Feasibility: Cost of H₂ Compression in PEM

Forecourt H2A Model (Ver. 3.0)¹

<table>
<thead>
<tr>
<th>H₂ Production Cost Contribution ($/kg)</th>
<th>Current Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Costs</td>
<td>0.70</td>
</tr>
<tr>
<td>Fixed O&M</td>
<td>0.30</td>
</tr>
<tr>
<td>Feedstock Costs</td>
<td>3.00</td>
</tr>
<tr>
<td>Variable Costs</td>
<td>0.10</td>
</tr>
<tr>
<td>Total Hydrogen Production Cost</td>
<td>4.10</td>
</tr>
<tr>
<td>Delivery (CSD)</td>
<td>2.50²</td>
</tr>
<tr>
<td>Total Hydrogen Production Cost</td>
<td>6.60</td>
</tr>
</tbody>
</table>

| Cost of Compression $1.03/kg-H₂ |

Truth Table

<table>
<thead>
<tr>
<th>Cost of Compression in PEM Electrolyzer ($/kg)</th>
<th>Comp.</th>
<th>Increased Feed Stock Costs (Efficiency Losses)²</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 psia</td>
<td>1.03</td>
<td>0.00</td>
<td>1.03</td>
</tr>
<tr>
<td>6,250 psia</td>
<td>0.31</td>
<td>+0.31</td>
<td>0.62</td>
</tr>
<tr>
<td>12,688 psia</td>
<td>0.12</td>
<td>+0.49</td>
<td>0.61</td>
</tr>
</tbody>
</table>

- ~$0.40 (40%) cost reduction compared to mechanical compression
- Largest $ contributor is Feedstock
 - Improving membrane efficiency and reducing electric cost are key to future cost reductions
- Higher cost of Stack/BOP may offset gains: Low cost stack/system designs required

²2015-2020 DOE Target is $1.70/kg

³300 psia H₂ feed source

⁴Based on electrical cost of $0.061/kWh