Project Overview

<table>
<thead>
<tr>
<th>Timeline</th>
<th>Barriers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start: June 2011</td>
<td>➢ Cost effective & timely evaluation of advanced components and configurations</td>
</tr>
<tr>
<td>End: June 2016</td>
<td>➢ Operational effectiveness & end-user acceptance of advanced concepts</td>
</tr>
<tr>
<td>55% complete</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Budget</th>
<th>Team</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cost: $38M</td>
<td>Lead: Volvo Technology of America</td>
</tr>
<tr>
<td>Cost share: $19M</td>
<td>Partners: Volvo, Grote, Penn State, Freight Wing</td>
</tr>
<tr>
<td>Cost to date: $18.3M</td>
<td></td>
</tr>
<tr>
<td>Funds to date: $9.1M</td>
<td></td>
</tr>
</tbody>
</table>
Relevance

- In support of DOE’s mission
 “[…] more energy efficient and environmentally friendly highway transportation […]”

- Project Objectives
 Objective 1 50% more ton-miles per gallon than a ‘best in class’ 2009 truck
 Objective 1a 50% Brake Thermal Efficiency
 Objective 2 55% Brake Thermal Efficiency Concept

- Reporting Period Objectives
 - Evaluate candidate technologies on concept vehicle
 - Complete technology selection (Phase I)
 - Start development & integration of technologies into demonstrator (Phase II)
Approach: Technology Selection & Integration

Phase I - Concept Selection
- Baseline Tests
- Techn. Development
 - Concepts Evaluation
 - engine bench
 - mule truck
 - Concept Truck
- Model Development
 - Validation
 - Energy Management Dev.
 - Virtual Optimization

Phase II - Development & Integration
- Techn. Refinement
 - Validation
 - Integration
 - demonstrator chassis
 - Optimization
 - Demo Truck

Identify, evaluate and select most promising technologies
Designing for real operating conditions

System Simulations

>1 billion miles of logged data

Customer Duty Cycles

Speed distribution (%) Simulated vs. log data

VOLVO

FREIGHT WING

Grote

PENNSTATE
Typical Fuel Energy Analysis (Long-Haul)

- Air Drag
 - Trailer add-on devices
 - Tractor redesign
- Rolling Resistance
 - Next gen. tires
 - Weight reduction
 - Intelligent controls
 - Smart 6x2
- Heat to Coolant
 - Combustion improvements
 - Rankine Cycle
 - Friction reduction
- Exhaust Heat
 - Turbo compounding
- Downsizing
 - Driveline loss
- Friction reduction
 - Brake loss

Next gen. tires

Volvo
Freight Wing
Grote
Importance of Integrated Design
Vehicle vs. Powertrain Improvements

Packaging, Cooling Needs,
...

Road Load, Heat Rejection,
...
Accomplishments: Phase I Testing Complete

- 16 configurations of Tractors & Trailer Modifications
- > 6,000 miles of on-road testing
- Correlated to chassis dynamometer & simulations
Phase I Results

- **On-road**
 - Chassis Dyno

- **Phase I**
 - Fuel Economy % imp
 - Freight Efficiency % imp
 - Payload Capacity Change %

- **Phase II**
 - 43% improvement
 - 41% improvement
Complete Vehicle Aerodynamic Optimization

Target > 40% lower drag

“best in class” MY2009

Fleet testing on-going to verify operational performance

Status: 30% drag reduction

Trailer add-on devices

Tractor tweaks

Integrated design

Co-optimization

Target > 40% lower drag
Accomplishments: Powertrain Improvements

- Demonstrator engine running in test cell
 - 11liter engine capable of same power as the 13liter
 - Targeting ~400lbs powertrain weight reduction
- 50% BTE technologies in test on component test rigs
Accomplishments: Ultra Light Frame Assembly

Q3’2012
- Evaluate Concepts
 - Bending
 - Innovation
 - Weight savings
 - Manufacturing
 - ...

Q2’2013
- Detailed Design & Stress Analysis
 - FEA
 - Virtual test track
 - ...

Q1’2014
- Prototype Fabrication
 - From idea to prototype in 18 months

> 40% lighter
New Opportunities for **Energy Management**

- **Intelligent Controls** leverage vehicle improvements to achieve further fuel efficiency gains
- **Auxiliary Integration** maximizes use of free energy
- **Powertrain Management** minimizes fuel use
Future Work: Demonstrator Build Plan

- **2014**
 - Axles, Brakes, Wheels, Tires, etc ordered
 - Axle Installation In Chassis
 - Exterior Chassis components ordered
 - Assembly begins for Chassis components
 - Cab BIW assembly Begins
 - Chassis Built and Delivered to VOLVO

- **2015**
 - APU Delivered
 - Engine Transmission Installation
 - Hood/Bumper, Roof, Ground Effects, Chassis Fairings, Side Deflectors Ordered
 - Cab Installed on Chassis
 - Chassis Components Complete
 - Chassis Built and Delivered to VOLVO
 - APU Delivered
 - Engine Transmission Installation
 - Hood/Bumper, Roof, Ground Effects, Chassis Fairings, Side Deflectors Ordered
 - Cab Installed on Chassis
 - Chassis Components Complete
 - Chassis Built and Delivered to VOLVO
 - APU Delivered
 - Engine Transmission Installation
 - Hood/Bumper, Roof, Ground Effects, Chassis Fairings, Side Deflectors Ordered
 - Cab Installed on Chassis
 - Chassis Components Complete
 - Chassis Built and Delivered to VOLVO
Summary: Reporting Period Objectives

• Accomplishments at 55% Project completion
 – Candidate technologies evaluated on concept vehicle
 – Demonstrated 43% Freight Efficiency Improvements
 – Demonstrated 48% BTE powertrain in vehicle
 – Completed Concept selection (Phase I) on schedule
 – Started development & integration of technologies into demonstrator (Phase II)

• Next Steps
 – Integrate technologies in Demonstrator vehicle for initial tests by next AMR
 – Continue on-going operational testing of trailer aero improvements
Partners & key Collaborations

<table>
<thead>
<tr>
<th>Organization</th>
<th>Key Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volvo Technology of America</td>
<td>Project lead & concept simulations</td>
</tr>
<tr>
<td>Volvo Group Truck Technology</td>
<td>Complete vehicle integration & vehicle testing</td>
</tr>
<tr>
<td>Volvo Group Powertrain Engineering</td>
<td>Efficient complete powertrain solutions</td>
</tr>
<tr>
<td>Ridge/Freight Wing</td>
<td>Advanced aerodynamic devices for trailers</td>
</tr>
<tr>
<td>Grote</td>
<td>Advanced lighting systems</td>
</tr>
<tr>
<td>Penn State University</td>
<td>Advanced combustion modeling & simulation</td>
</tr>
<tr>
<td>Hendrickson</td>
<td>Lightweight trailer axle & suspension components</td>
</tr>
<tr>
<td>ExxonMobil</td>
<td>Advanced fuels & lubricants</td>
</tr>
<tr>
<td>Alcoa Wheels</td>
<td>Lightweight wheels</td>
</tr>
<tr>
<td>Michelin</td>
<td>Advanced low-friction tires</td>
</tr>
<tr>
<td>Metalsa</td>
<td>Ultra-Light Frame Assembly</td>
</tr>
</tbody>
</table>
Relevant Research

This material is based upon work supported by

- DOE & NETL under Award Number DE-EE0004232
- DOE & NETL under Award Number DE-FC26-07NT43222
- DOE Project ID VSS006, Reduce Truck Aerodynamic Drag w/ LLNL
- DOE Project ID VSS022, CoolCab – Reduce Thermal Load w/ NREL

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.