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Overview

Timeline Barriers Addressed

e Start date: October, 2012 e Energy density

e End date: September, 2016 e Cycle life

e Percent complete: 40% e Safety

Budget Partners

e Total project funding e Collaborations: Kostecki, Doeff,
_FY2013 $500K Ross (LBNL), Grey (Cambridge),

Chiang (MIT), Lucht (URI), NCEM,
FY2014 S500K ALS, SSRL

e Project lead: Venkat Srinivasan



Objectives — Relevance

Obtain fundamental understandings on phase transition
mechanisms, kinetic barriers, and instabilities in high-energy
cathode materials.

Control cathode-electrolyte interfacial chemistry at high operating
voltages and minimize solid-state transport limitations through
particle engineering.

Develop next-generation electrode materials based on rational
design as opposed to the conventional empirical approaches.



Milestones

December 2013

Synthesize at least five new cathode crystal samples
with at least two new morphologies (Completed)

March 2014

Characterize the interface between the high-voltage
cathode and the electrolyte. Identify the role of
particle surface planes in interfacial reactivity
(Completed)

June 2014

Complete the studies on structural evolution during
initial Li extraction/insertion and extended cycling.
lllustrate the impact of structural changes and
phase transformation on rate capability and stability
(On schedule)

September 2014

Go/No-Go: Continue low-temperature based
solvothermal synthesis. Criteria: If the crystal
samples show similar quality and performance to
those made at high temperatures (On schedule)




Cathode materials are complex

Morphology
(primary and secondary
particle shape, porosity,
grain boundary)

Size
(primary and
secondary)

e Material optimization based
on empirical approaches not
practical.

Phase
Transition

lonic and e
Conductivities
Mechanism
Ni/Mn
Ordering

Impurities
(rock-salt)

e Rational design requires well-
controlled studies on high-
quality samples, yet
conventional electrode materials
synthesized by solid state
reactions are large agglomerates
with random orientations.

e Our strategy: single-crystal
based diagnostics

Oxygen non-
stoichiometry

Ni/Mn ratio



Approach

Use single-crystal model systems to investigate solid state
chemistry, kinetic barriers and instabilities in high-energy cathode
materials.

Perform advanced ex situ and in situ studies to characterize
crystal-plan specific transport properties and interfacial
chemistry. Establish direct correlations between crystal structure,
composition, morphology, performance, and stability.

Design and synthesize optimized electrode materials based on
the structural and mechanistic understandings.



Technical accomplishments: overview

* Synthesis techniques developed to prepare a variety of cathode crystal
samples.

* Using single-crystal studies on high-voltage LiMn, (Ni, .0, (LMNO) and layered-
layered oxides as examples, we demonstrated the importance of rational
design and engineering of active particles in electrode performance and
stability. Impacts are shown in several issues:

o Self-discharge during storage

o Side reactions with electrolyte during cycling
o Transport properties

o Phase transformation behavior

o First-cycle activation kinetics

* For the first time, room-temperature Li Mn, (Ni; O, (Li, MNO) solid solution
phases were synthesized and isolated through thermal treatment and their
properties characterized. This enables more detailed investigation on kinetic
implication of solid-solution vs. two-phase reaction pathways.

* Established several diagnostic techniques for the particle-level investigation of
cathode materials.



Cathode single crystals with a variety of sizes
and shapes synthesized

Li; oNig 43Mng 5,C0q 130,
B : Ly, R

e Various layered-oxide crystal samples synthesized by changing the
reaction precursors and/or fluxes.



Cathode single crystals with a variety of sizes
and shapes synthesized
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Cathode single crystals with a variety of sizes
and shapes synthesized

e Solvothermal synthesis produced unigue morphologies inaccessible at high temperature.



LMNO crystals with (111) and (112) facets




(111) vs. (112) crystal planes
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Self-discharge severe in delithiated LMNO
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e Aging of fully delithiated LMNO plates and octahedrons in 1M LiPF, in EC:DEC
electrolyte for 5 weeks.

e Electrolyte color developed as a result of side reactions.

e Process is influenced by state of charge and storage temperature.
Morphology also matters.



Increasing Li content

Reduced self-discharge on (111) facets
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Li content

0.4

0.3

0.2

0.1

0.0

Reduced self-discharge on (111) facets
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e Estimated lithium content after 5
weeks RT aging: 0.2-0.3 (plates) and 0.1-
0.2 (octahedrons).

e Particle morphology design can
minimize relithiation.

e Relithiation may be used as a kinetic
index for side reactions between
cathode and electrolyte.
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e Better cycling efficiency and lower per-cycle capacity loss in octahedrons.

e Enhanced side reactivity on plate (112) surface facets.
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Reduced side reactions on (111) facets
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Side reactions and cathode surface layer

LiMny eNig 0,4 XPS Spectra collected at hv = 4 keV:

Mn 2p ﬁ:h

O1s |

Ni 2p

ALS tender XPS at 9.3.1 &
soft XPS at 9.3.2

Collaboration with P. Ross and E.
Crumlin
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e Data collected on carbon and binder free electrodes under UHV (~107 torr)

e Side reaction products are surface-facet dependent.



Side reactions and cathode surface layer

Probing depth: ~ 10-15 nm ~1-3 nm
F1s:v=dkeV F1s: hv=810eV
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e Depth profiling shows
variation in surface species
along the layer thickness.
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Enhanced rate capability on (111) facets
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e Charging peak voltage upshift suggests increased resistance for Li extraction
from the plates.

e Higher rate capability in octahedrons suggests better Li transport properties
on (111).

e Does phase transition mechanism play a role?
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Phase transformation in octahedrons
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Solid-solution vs. two-phase transition
mechanisms

e Conventional wisdom says the access to solid-solution reaction pathways increases
rate capability and cyclability.

* Solid-solution Li intercalation as a function of cation order/disorder suggested by
theory (Persson et al), which predicts full-range solid solution transformation in
perfectly disordered spinel. Perfectly ordered or disordered LMNO, however,
practically impossible to make.

e Questions: can we obtain RT Li, MNO solid-solution phases with a wide x range?
What are their physical and electrochemical properties? What is the kinetic
implication of solid solution vs. two-phase transitions in LMNQO?

e Single crystal samples are excellent platform to gather detailed knowledge on
Li, MNO solid solution phases.
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Chemically delithiated LMNO crystals prepared
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Thermal-driven Li, MNO solid solution formation
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e In situ XRD collected during thermal treatment of Li, 3, MNO.

e At elevated temperatures, the cubic phases can merge into a single solid-solution phase.



Thermal-driven Li, MNO solid solution formation

e At elevated
temperature,
phase-pure solid
solutions form in
samples with high
Li content (above
Li0.51) but
impurities form at
low Li content.

e Formed solid
solutions remain
phase pure after
cooling to RT.
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Thermal-driven Li, MNO solid solution formation
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e Formation of solid solutions initiated
around 150 °C and completed around 250-

265°C.

e Cooling of solid solution phases follow
thermal expansion behavior with no phase
separation.

e Thermal behavior is Li content dependent.
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Characterization of Li, MNO — Raman

Collaboration with R. Kostecki
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e Raman features of solid solutions resemble that of pristine LMNO.

e Rapid structural changes occur at Li content between 0.71 and 0.51.



Characterization of Li MNO -

As prepared Heat treated
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e Major structural
changes concur with
the large increase in
phase Ill (MNO)
content between
Li0.71 and Li0.51.

e Cubic phase land Il
merge into solid
solution on heating,
but phase I
decomposes which
leads to the presence
of impurity in samples
with low Li content.



Characterization of Li, MNO — XAS
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e XANES spectra show lower Ni
oxidation state in heat-treated samples
with low Li content (x<0.51),
suggesting that the formation of the
impurity is related to Ni reduction.



Characterization of Li, MNO — XAS

Normalized intensity (a.u)
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e No significant changes in Mn
oxidation state. Mn remains at 4+.



FT intensity (a.u)

Characterization of Li, MNO — XAS

Ni-O Ni-M
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e On EXAFS spectra, expansion of Ni-O and Ni-M bonds was observed in heat-
treated samples with high SOCs (x<0.51), consistent with Ni reduction.
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Layered oxide composites — activation kinetics
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* Size and morphology have major impact on structural
evolution and first-cycle activation kinetics.

*  Worst kinetics on polyhedron morphology but size
reduction can help.



Cycling induces TM reduction

Soft X-ray absorption spectroscopy
(SSRL beamline 10-1)
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Normalized absorbance
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e Bulk reduction of TM oxidation state observed upon continuous cycling of

binder and carbon free electrodes.

e What’s the cause? Where does it initiate? Can we visualized this change at
particle-level to gain mechanistic understandings?



Particle-level mapping of TM oxidation state

Collaboration with T. Tyliszczak
STXM, BL 11.0.2 (ALS)

scanned

sample zone plate

detector

O

aperture

® Transmission mode imaging on bulk of the particle but at a
spatial resolution of 25 nm (single pixel).

e Energy range of 200 -1900 eV, suitable for many TM detection.



Mapping of TM oxidation state — pristine oxide

Mn L--edge
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e Single pixel spectra collected on
Li, ,Nig ;3Mn, ¢,Co, 150, crystals.

e Mn and Ni are 4+ and 2+,
respectively, consistent with the
measurement on the bulk sample.

e No variation in oxidation state from
the center to the edge of the crystal.
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Mapping of TM oxidation state — charged oxide
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Collaborations

Robert Kostecki (LBNL) — Raman and FTIR characterization of
electrode materials

Vassilia Zorba (LBNL) — laser induced breakdown spectroscopy
Kristin Persson (LBNL) — modeling
Clare Grey (Cambridge) — NMR studies

Marca Doeff and Phil Ross (LBNL), Zhi Liu, Ethan Crumlin and
Tolek Tyliszczak (ALS) — synchrotron in situ and ex situ XRD, XAS,
XPS and STXM

Yet-Ming Chiang (MIT) — conductivity measurement and
acoustic emission studies

Brett Lucht (URI) — electrolyte interactions



Future Work

Complete the construction of L, MNO phase diagram. Establish
solid-solution vs. 2-phase behavior as functions of Li content and
temperature.

Perform electrochemistry to evaluate cycling and kinetic
properties of L MNO solid solution phases. Investigate kinetic
implication of solid-solution vs. 2-phase reaction pathways in
LMNO.

Further evaluate the impact of surface properties, including
surface modifications, on side reaction kinetics and products as
well as capacity fade in high-voltage cathode materials. Explore
other aspects of particle engineering to improve cathode
performance and stability.

Perform single-particle diagnostic studies to understand cycling
and aging induced structural changes and their impact on voltage
fade, rate limit and DC resistance increase in layered oxides.



Summary

e Well-formed single crystals of high-voltage cathode materials with
a variety of sizes and morphologies were synthesized.

e Single-crystal based studies enabled following understandings:

o Self-discharge severe on charged LMINO but the process can be
manipulated by particle morphology engineering.

o Particle size and surface facet play critical roles in cathode
performance and stability, including transport properties, side
reactivity with the electrolyte, phase transformation, layered
oxide activation kinetics.

e RTL,MNO solid solution phases were synthesized and
characterized. Electrochemical studies planned.

e Diagnostic techniques developed for the single-crystal investigation
relevant to cathode performance and stability.





