Cummins SuperTruck Program
Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks

David Koeberlein- Principal Investigator
Cummins Inc.

June 20, 2014

Project ID: ACE057

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

OBJECTIVES

<table>
<thead>
<tr>
<th>Engine</th>
<th>Objective</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>Test cell demonstration of 50% or greater BTE engine</td>
<td>2010: [] 2011: [] 2012: [] 2013: ✔️ 2014: ✔️</td>
</tr>
<tr>
<td>2a:</td>
<td>Vehicle drive cycle demonstration of 50% or greater freight efficiency improvement</td>
<td>2010: [] 2011: [] 2012: ✔️ 2013: ◼️ 2014: ◼️</td>
</tr>
<tr>
<td>2b:</td>
<td>Vehicle 24 hour duty cycle demonstration of 68% or greater freight efficiency improvement</td>
<td>2010: [] 2011: [] 2012: [] 2013: ✔️ 2014: ✔️</td>
</tr>
<tr>
<td>3:</td>
<td>Technology scoping and demonstration of a 55% BTE engine system.</td>
<td>2010: [] 2011: [] 2012: [] 2013: ✔️ 2014: ✔️</td>
</tr>
</tbody>
</table>

Budget:
- **Total**: $77,662,230
 - DoE share*: $36,335,608
 - CMI share*: $36,335,608
- *actuals as of 12/31/2013

Partners:
- **Cummins** – Program Lead & Engine
- **Modine**
- **Oak Ridge National Lab**
- **Purdue University**
- **Peterbilt** – Vehicle Integrator
 - Peterbilt Partners

Peterbilt partner details are included in Peterbilt’s 2014 AMR presentation ARRA-081
Overview – Program Barriers

• Engine Downs speed (Reduced Engine Speed)
 ✓ Powertrain component response
 – Closed cycle efficiency gains
• High Conversion Efficiency NOx Aftertreatment
 ✓ Fuel Efficient Thermal Management
✓ Vehicle and Engine System Weight Reduction
✓ Underhood Cooling with Waste Heat Recovery
• Powertrain Materials
 ✓ Increased Peak Cylinder Pressure with Cost Effective Materials for Block and Head
 – Thermal Barrier Coatings for Reduced Heat Transfer
✓ Trailer Aerodynamic Devices that are Functional
• Parasitic power reductions

More vehicle specific details are included in Peterbilt’s 2013 AMR presentation ARRA-081
Relevance - American Recovery and Reinvestment Act (ARRA) & VT ARRA Goals

- **ARRA Goal: Create and/or Retain Jobs**

<table>
<thead>
<tr>
<th>Year</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Time Equivalent</td>
<td>75.5</td>
<td>85</td>
<td>60</td>
<td>46</td>
<td>17</td>
</tr>
</tbody>
</table>

 Projections

- **ARRA Goal: Spur Economic Activity**
 - Greater than $72.6M total spend to date (ref: thru Dec 2013)

- **Goals align with VT Multi-Year Program Plan 2011-2015**
 - Advanced Combustion Engine R&D (ACE R&D):
 - 50% HD engine thermal efficiency by 2015 (ref: VT MYPP 2.3.1)
 - Vehicle and Systems Simulation and Testing (VSST):
 - Freight efficiency improvement of 50% by 2015 (ref: VT MYPP 1.1)

- **Invest in Long Term Economic Growth**
 - Freight transport is essential for economic growth
 - Commercial viability assessment

20Jun2014
Approach – Vehicle Energy Analysis

Analysis of 27 Drive Cycles for Class 8 Vehicles with a Variety of Seasons (Summer, Winter, etc.)

1. Engine Losses
 - Urban: 58-60%
 - Interstate: 58-59%
 Cummins

2. Aerodynamic Losses
 - Urban: 4-10%
 - Interstate: 15-22%
 Peterbilt

3. Rolling Resistance
 - Urban: 8-12%
 - Interstate: 13-16%
 Bridgestone & Goodyear

4. Drivetrain
 - Urban: 5-6%
 - Interstate: 2-4%
 Eaton & Dana

5. Auxiliary Loads
 - Urban: 7-8%
 - Interstate: 1-4%
 Delphi & Bergstrom

6. Inertia / Braking
 - Urban: 15-20%
 - Interstate: 0-2%

Analyze: Where is the energy going? Identify priority.

20Jun2014
Technical Accomplishments - Freight Efficiency Enabling Technologies

- WHR Engine System
- Advanced Formula Aftertreatment
- Advanced Cab and Trailer Aerodynamics
- GPS Cruise Control
- Efficient Cooling Package
- Retractable Trailer Skirts
- Battery APU
- Advanced Single Tires

Reference: Objective 2
- Vehicle details are included in Peterbilt’s 2013 AMR presentation ARRA-081

20Jun2014
Technical Accomplishment – 24 hour Freight Efficiency Test Results

86% Freight Efficiency Improvement
75% Fuel Efficiency Improvement
43% CO2 Reduction

SuperTruck @ DoE Headquarters – 19Feb2014

Reference: Objective 2
• Vehicle details are included in Peterbilt’s 2013 AMR presentation ARRA-081
Technical Accomplishment – Freight Efficiency Status

Reference: Objective 2
• Vehicle details are included in Peterbilt’s 2013 AMR presentation ARRA-081
Approach - Integration of Cummins Component Technologies

- Air Handling & EGR
- Combustion
- Fuel Systems
- Electronic Controls
- Aftertreatment (AT)
- Waste Heat Recovery
Approach – 55% Thermal Efficiency

\[\eta_{\text{thermal}} = \eta_{\text{closed}} \times \eta_{\text{open}} \times \eta_{\text{mechanical}} + \text{WHR} \]

1. Exhaust
2. Coolant/Lube
3. Air

Reference: Objective 3
Approach –
55% Engine Technology Scoping - Fuels

Approach #1
- HCCI
- Dual Fuel
- AFCI

Approach #2
- Conventional
- Diesel LTC
- Premix
- PCCI

1. Analytical >> Experimental
2. Design Space is Broad
3. Fuel Study
 - Lower Heat Transfer
 - Control Burn Duration
 - Increase Effective Expansion

Premix Fuel Quantity**

Quantity of Alternative Fuel*
Technical Progress - Improvements
(Based on Engine, AT & WHR Testing)

Objective 1
50% BTE

Objective 3
55% BTE

Status 2013 Merit Review:
Engine + High Efficiency AT + WHR
(Engine, AT & WHR System Testing)

Program Baseline – 42%

42% 43% 44% 45% 46% 47% 48% 49% 50% 51% 52% 53% 54% 55%

Achievement to date 51%

2014 55% BTE Efforts

Diesel Engine only

Inj, Piston & Parasitic Revisions

Inj, Piston & Parasitic Revisions

WHR

WHR

Dual Fuel Engine only (10bar)

Load increase

Engine Brake Thermal Efficiency (%)

*WHR - Cummins Organic Rankine Cycle Waste Heat Recovery

20Jun2014
Technical Progress
Optimized Piston Bowl – Genetic Algorithm

Objectives
- Minimize GISFC
- Constrain NOx, PM, Peak Cylinder Pressure

- 131 bowl generations computed
 - Compression ratio increase
 ➢ Optimized profile outperformed

BTE impact: + 0.5% BTE
Technical Progress
Optimized Injector – Single Cylinder Engine

• Injection rate shape revised with injector specification
 – Controls combustion heat release rate

• Seeking to minimize combustion duration
• Seeking to control combustion phasing for optimum efficiency

1.3pt Close Cycle Efficiency Gain

Impact of injection rate shape at constant intake conditions

20Jun2014
Technical Progress – Piston Thermal Solutions

Base Piston: Max Temp = 254 C
Piston A: Max Temp = 345 C
Piston B: Max Temp = 386 C

0.6 pt heat loss reduction
0.3 pt GITE improvement

0.3 pt heat loss reduction
0.1 pt GITE improvement

BTE impact: + 0.8% BTE

20Jun2014
Technical Progress –
Improved WHR Turbine Expander & Parasitic Reductions

• Improved turbine efficiency
 • System heat exchanger architecture arrangement
 – Pre-heat of low pressure loop

 BTE impact: + 0.7% BTE

• Friction and Parasitic reduction
 – Piston/ring pack/liner changes
 – Piston cooling flow reduction
 – Main & rod bearing

 BTE impact: + 0.6% BTE

Turbine Expander Performance Comparison

- +1.8hp

Motoring FMEP Reduction

~50% Reduction

20Jun2014
Technical Progress
Conventional Diesel Path to 55% BTE

Path to 55% BTE for Conventional Diesel Combustion Cruise Condition

Brake Thermal Efficiency [%]

- 56%
- 55%
- 54%
- 53%
- 52%
- 51%
- 50%
- 49%
- 48%
- 47%
- 46%

50% BTE Engine
Exhaust/EGR WHR
Coolant WHR
Optimized Bowl
Optimized Injector
Optimized Heat Transfer
Parasitics Reduction
Optimized WHR Turbine

Demonstrated SuperTruck

20Jun2014
Technical Progress - Alternate Fuel Compression Ignition (AFCI) – Analysis to Experiment Status

• Experiments align to analysis
 – Analysis showed peak efficiency between 14 to 16 bar
 – Temperature sensitivities observed
 • Control system compensation algorithms helpful to manage cyl-cyl variation
 • ORNL probe test for residual gas & Tivc
• WHR estimates revised to experimental heat availability
Technical Progress
AFCI Efficiency and Emission Capability

- Demonstrated AFCI engine efficiency of 49.4% BTE
- NOx emission low
- HC emission reasonable for DOC formulations
Innovation You Can Depend On

Technical Progress
AFCI Combustion Phasing Control

- Combustion phase control system developed
 - Cylinder-to-Cylinder & Cycle-to-Cycle controller
 - Enables independent control
 - Maximized overall multi-cylinder engine capability
 - Robustness to cylinder-to-cylinder and cycle-to-cycle variations

![Graph showing CA50 over time with controller on and off]
Collaborations – ORNL & Purdue Participation

• ORNL
 – Sensing methods for model development and validation of:
 • Tivc determination
 – EGR fraction
 – Residual fraction

• Purdue University
 – Completed diesel PCCI study
 – Explore range expansion
 – Diesel engine VVA
 – Commissioned intake & exhaust VVA test bed
 – VVA functional analysis

Modeling & Simulation
Presented: ACE077 - Partridge

Innovation You Can Depend On
Reviewer Comments and Responses

Many complimentary comments:

• *Project had accomplished objectives on time to date*
• *Observed a large project team, incorporating laboratories, industry and universities.*

Recommendations:

• *Cautioned that the 55% goal approach relied upon HCCI and dual fuel, where these two technologies have not been experimentally proved to be BTE improvement friendly technologies. The reviewer warned that while dual fuel showed some promising feature, high pumping loss and stability control for transient operation was too tough to overcome. Both technologies suffered high HC emissions. The contractor should demonstrate the technical feasibility with preliminarily convincing data at the current level.*
 – Comments: We are taking both a conventional diesel and a dual fuel approach. Our analysis path last year had identified a viable path with dual fuel. Over the course of last year, our efforts toward advancing conventional diesel has shown a viable conventional diesel path.
• *Cautioned that reliance on dual fuel was risky for a 55% goal, partially due to high HC and CO emissions for cold start.*
 – Comments: Dual fuel would start on diesel. Emission and speciation sampling during our dual fuel testing has shown HC emission that are reasonable for effective and efficient conversion with a conventional diesel oxidation catalyst (see 2014 slide 20).
• *The reviewer commented that Slide 20 only showed two key partners for technical progress (i.e., ORNL and Purdue University), while Slide 7 showed a large number of partners. The information was kind of misleading in terms of collaboration and coordination.*
 – Comments: As the prime PI, I try to give a program perspective of the overall related partnerships, i.e. 2013 Slide 7, however, the details of this presentation focused more detail on those collaborations and partnerships pertinent to our engine related activities, i.e. 2013 slide 20.

20Jun2014
Milestones and Technical Accomplishments

• March 2013 to March 2014 – **Technical Accomplishments**
 √ Demonstrated 86% freight efficiency improvement (Objective 2b – 24hr)
 √ 75% fuel economy increase
 √ Demonstrated 76% freight efficiency improvement (Objective 2a – Drive)
 √ 66% fuel economy increase
 √ Demonstrated Li-Ion Battery & SOFC capability
 √ Completed wind tunnel and vehicle testing of Waste Heat Recovery
 √ Validated an advanced transmission efficiency model
 √ Path-to-Target analysis for a 55% thermal efficient engine
 √ Demonstrated AFCI ‘engine only’ efficiency of 49.4% BTE @ 10bar (Objective 3)

• March 2014 to September 2014 – **Future Work**
 – 55% BTE path to target roll-up analysis (Objective 3)
 • Targeted verification testing
Summary

• Program remains on schedule
 – Meeting the ARRA and DoE VT MYPP goals
• Demonstrated a 50+% BTE engine system (Objective 1)
• Demonstrated a 70+% vehicle freight efficiency gains (Objective 2a & 2b)
 – Analytical roadmaps updated with experimental component data
 – Built and tested sub-systems
 • Cummins Waste Heat Recovery vehicle testing (Objective 2a)
 • Advanced transmission dynamometer and vehicle test (Objective 2a)
 • Solid Oxide Fuel Cell APU in lab and vehicle tests (Objective 2b)
 • Li-Ion battery APU (Objective 2b)
 • Tractor-Trailer aerodynamic aids (Objective 2a)
• Developed framework and analysis for 55% thermal efficiency
 – Completed analytical roadmaps for both diesel and dual fuel approaches
 – Completing targeted engine tests to validate roadmaps
• Developed working relationship with excellent vehicle and engine system delivery partners
Technical Back-Up Slides
Participants – Who’s doing what

Roles and Responsibilities

<table>
<thead>
<tr>
<th>Participant</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cummins Inc.</td>
<td>• Prime contractor
• Team coordination
• Engine system
• Vehicle system analysis</td>
</tr>
<tr>
<td>Peterbilt Motors Co.</td>
<td>• Vehicle Build Coordination
• Vehicle Integration
• Tractor-Trailer Aero
• Freight efficiency testing</td>
</tr>
<tr>
<td>Cummins Turbo Technology</td>
<td>Turbomachinery & WHR power turbine</td>
</tr>
<tr>
<td>Cummins Fuel Systems</td>
<td>Fuel system</td>
</tr>
<tr>
<td>Cummins Emissions Solutions</td>
<td>Aftertreatment</td>
</tr>
<tr>
<td>Eaton</td>
<td>Advanced transmission</td>
</tr>
<tr>
<td>Delphi</td>
<td>Solid Oxide Fuel Cell idle management technology</td>
</tr>
<tr>
<td>Bendix</td>
<td>Reduced weight brake system and drive axle control</td>
</tr>
<tr>
<td>Bridgestone & Goodyear</td>
<td>Low rolling resistance tires</td>
</tr>
<tr>
<td>Modine</td>
<td>WHR heat exchanger & vehicle cooling module</td>
</tr>
<tr>
<td>U.S. Xpress</td>
<td>• End User Review
• Driver Feedback
• Commercial Viability</td>
</tr>
<tr>
<td>Oak Ridge National Laboratories</td>
<td>Fast response engine & AT diagnostic sensors</td>
</tr>
<tr>
<td>Purdue University</td>
<td>• Low temp combustion
• Control models
• VVA integration</td>
</tr>
<tr>
<td>VanDyne SuperTurbo</td>
<td>Turbocompounding/Supercharging</td>
</tr>
<tr>
<td>Utility Trailer</td>
<td>Lightweight Trailer Technology</td>
</tr>
<tr>
<td>Dana</td>
<td>Lightweight Drivetrain Technology</td>
</tr>
<tr>
<td>Bergstrom</td>
<td>HVAC</td>
</tr>
<tr>
<td>Logena</td>
<td>Network interface</td>
</tr>
</tbody>
</table>

20Jun2014
Technical Accomplishments – 50+% Thermal Efficiency Gains

Gross indicated gains
- Comp. ratio increase
- Piston bowl shape
- Injector specification
- Calibration optimization

Gas flow improvements
- Lower dP EGR loop
- Turbocharger efficiency

Parasitic reductions
- Shaft seal
- VF Lube pump & viscosity
- Geartrain
- Cylinder kit friction
- Cooling & fuel pump power

WHR system
- EGR, Exhaust, Recuperator
- Coolant & Lube

Reference: Objective 1
Cummins Waste Heat Recovery

• Organic Rankine Cycle

• Recovery of:
 – EGR
 – Exhaust heat

• Mechanical coupling of WHR power to engine

• Low global warming potential (GWP) working fluid refrigerant

• Fuel Economy improvement goal of ~6%

• 1st vehicle installation Sep2011
Vehicle Freight Efficiency of Aerodynamic Drag Reduction

* Cd's Shown Are Adjusted to SAE J1252 Baseline Using % Average Deltas From 0 and 6 Degree CFD Runs

20Jun2014
Vehicle Weight Reduction – Freight Efficiency Improvement

Weight Reduction (lb)

-3000
-2000
-1000
0
1000
2000
3000

WHR/2010 Emissions
Aero Devices
Idle Systems
Onboard Fuel
Truck Savings
Trailer Savings
Net Weight Difference

1305 lb Bonus Freight

20Jun2014