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Capturing dynamics:
Enable grid operations from reactive to predictive
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Projects and teams

Dynamic Paradigm for Grid Operations

— Henry Huang, Ning Zhou (Binghamton University), Steve Elbert,
Shuai Lu, Da Meng, Shaobu Wang, Ruisheng Diao

Look-Ahead Dynamic Simulation
— Shuangshuang Jin, Ruisheng Diao, Di Wu, Yousu Chen

* Dynamic Contingency Analysis
— Yousu Chen, Mark Rice, Shuangshuang Jin, Kurt Glaesemann

* Non-lterative Voltage Stability Analysis

— Yuri Makarov, Bharat VVyakaranam, Da Meng, Pavel Etingov,
Tony Nguyen, Di Wu, Zhangshuan (Jason) Hou, Shaobu Wang,
Steve Elbert, Laurie Miller

See project details on posters...




Trend of frequency variance

» Traditional state estimation does not accurately capture the system’s
dynamic status
— During emergency situations, frequency is significantly off nominal 60Hz
— During normal operation, frequency tends to deviate more often from 60Hz
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Challenges in future power grid operations
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Dynamic paradigm for grid operation

« National Driver: clean and efficient power grid as well as being affordable,
reliable, and secure = dynamic and fast operation
e Technical Approach: combine model prediction and measurement
observations to determine where we are, where we are going, and what-ifs
— Fuse models and data with nonlinearity, discontinuity, model deficiency, and data
sparsity
— Develop Advanced Kalman Filter and HPC codes to estimate states and models
— Solve a large number of ODE systems to predict future states and alternative
states
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Enabling factor —
Phasor measurement

» Time-synchronized, high-speed measurement at 30 samples per
second, able to capture the majority of grid dynamics

Phasor N Units and h

Data Flows in the North American Power Grid -

NASPI: www.naspi.org
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Enabling factor —

Computing technology

CMOS technology hitting its limits due to power dissipation for the

increased clock speed (4-6

GHz)

Moore’s Law still applies — multiple-core processors (parallel

computers)

— PCs: Two-, four-, and
eight-cores

— HPCs: 100s~1,000s cores

— Forthcoming high-end
parallel systems expected
to offer million cores

Parallel computing

becomes a fundamental

technique
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Advanced Kalman Filter for dynamic state estimation
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Performance evaluation — estimation accuracy

¢ Excellent tracking with realistic evaluation conditions

— 3% measurement noise; 40 ms measurement cycle (phasor measurement)
— 5 ms interpolation cycle; modeling errors considered; unknown inputs;

unknown initial states
States tracking (Basic EnKF)
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Filtering technology assessment
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Computational performance — scalability

Current codes scale to ~1,000 cores

Current computational performance meets the real-time requirement for
regional systems

Performance is expected to be real-time soon for interconnection-scale

systems
oo COMputational time per estimation step

1000 _ 201772 /

100 ©

4 June 2014
© L 5ct 2012 SWEEC
. 16,012 w

o1 | Oct 2012

TeraFLOPS

30 ms

30.000 3.000 0.300 0.030 0.003

13

Look-Ahead Dynamic Simulation

___ _ I=
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Performance evaluation with the WECC system

13x faster compared to a commercial tool with sequential computing
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Dynamic Contingency Analysis

» Solving a large set of Differential Algebraic Equations
« Computational challenge is load balancing — dynamic load balancing

vs. static load balancing

Commercial Tool on HPC
via Virtual Machine

Native HPC
Implementation
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Voltage Stability Analysis

* Obijectives:

— Generate voltage stability boundary (VSB) accurately and quickly
— Use parallel computing to further enhance speed
— Provide connectivity to commercial tools such as PowerWorld

a

XR

OM-HO

OM-HO

OM-HO
+ XR

OM-HO

¥ XR

A combination of methods to
explore the VSB:

— Continuation power flow (CPF)

— New PNNL method based on the
X-ray theorem (XR)

— Orbiting method (OM) - a direct
VSB tracing procedure

— High-order numerical methods
(HO)
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Voltage Stability Analysis —

Computational performance

Minimizing the CPF runs results
computational performance

in great improvement in

— 5.6x speedup for WECC-sized system in this example

further improve the performance

Veltage Security Region in Injection Space - Load at two buses

Boundary Points

Parallel computing version is being implemented and expected to

Total
simulation
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flow (CPF) method (BOM)
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Use cases of dynamic paradigm
» Real-time predictive grid Phasor mefsureme”t
operation with calibrated model () Dynamic
and parameters for faster Feie asfimefon
response and control i i
. Real-time calibrated
+ Effective management of large- model and parameters
scale integration of smart grid "
technologies such as renewable Base Contingency _
generation, demand response, case case C""t;’,’ie”cy
electric vehicles, and distributed | analysis analysis .
generation Real-time
« Better asset utilization to transfer
maximize power transfer limits (&)

capabilities and defer
transmission expansion

Reporting

u Advanced computing platform
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Synergistic work

* M2ACS Predictive Modeling, DOE-ASCR
— Stochastic modeling and data assimilation

* GridPACK™, DOE-OE

— Parallel computing library for efficient development and better
compatibility

» Non-Wire Methods for Congestion Management, DOE ARPA-E
— Transient and voltage stability analysis

— Asset utilization improvement through real-time path rating

See project details on posters...
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Summary

» Grid evolution meeting information revolution =» grid operations
transition from static & slow to dynamic & fast

— Enabling technologies are computation advancement and data
development

» Adynamic paradigm is necessary to capture emerging dynamics and
understand where the grid is, where the grid is going, and where the
grid could end up

— Dynamic state estimation based on Advanced Kalman Filter
— Look-ahead dynamic simulation
— Dynamic contingency analysis of transient and voltage stability

» This paradigm is expected to facilitate integration of new generation

and load for a more reliable, efficient, and cleaner power grid
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Capturing dynamics:
Enable grid operations from reactive to predictive
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Dynamic States

.
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Contacts

Dynamic Paradigm for Grid Operations
— Henry Huang, 509-372-6781, zhenyu.huang@pnnl.gov

Look-Ahead Dynamic Simulation
— Shuangshuang Jin, 206-528-3061, shuangshuang.jin@pnnl.gov

» Dynamic Contingency Analysis
— Yousu Chen, 206-528-3062, yousu.chen@pnnl.qgov

* Non-lterative Voltage Stability Analysis
— Yuri Makarov, 509-372-4194, yuri.makarov@pnnl.gov
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Questions?
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Backup slides
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Capturing dynamics:
Enable grid operations from reactive to predictive
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Dynamic States

Mitigate intermittency of renewable energy

BPA Balancing Authority — Total Wind Generation and Wind Basepoint
Feb. 25-March 4, 2010
2,000 W Saturday Sunday
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500 MW [ A i
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Scheduling wind power to track closely fo nature'’s changes in wind speed is a challange. Blue iina is
actual generation, red is wind power scheduled in BPA's

Source: BPA Fact Sheet, “BPA’s wind power efforts surge forward,” March 2010 2




Improve asset utilization

Transfer Capacity Example — California Oregon Intertie (COIl)

U75, U90 and U(Limit)

Path Ratings

Thermal rating
(N-0 = 10,500 MW)
(N-1 = 6000 MW)

U75 - % of time flow exceeds
75% of OTC (3,600 MW for COI)

WECC
Stability Rating U90 - % of time flow exceeds
<« 90% of OTC (4,320 MW for
° col)
£
-1, N-2= =
{N-1, N-2 = 4,800 MW) %5 U(Limit) - % of time flow
WECC/NERC Criteria x® reaches 100% of OTC
«— (4,800 MW for COI)
75% 90% 100%

% of OTC —0n0uup
Source : Western interconnection 2006 congestion management study
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Today’s power grid operation paradigm

» Steady-state model based: static and slow paradigm
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Computers are more affordable

Approximate cost per GFLOPS

$10,000,000,000,000.00 _» 1997
$1,000,000,000,000.00 SLIODOO0, =» |BM Deep Blue
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$1,000,000,000.00
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§10,000,000.00
$1,000,000.00
$100,000.00
$10,00000
$1,000.00
1000 » 2005 (8 years later)
$1000 » Sony VAIO GRT-290Z
5100 B 6 GFLOPS, ~$2,000
010 \
S001 1¢ %
1950 1960 1970 1980 1950 2000 2010 2020 > 2012 (15 year later)
Data Source: http://en.wikipedia.org/wiki/FLOPS E > LG Optimus 4X HD P880
B 24 GFLOPS, $600
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