Practical Considerations for Feature, Event, and Process (FEP) Analysis

Geoff Freeze, Sandia National Laboratories

Performance and Risk Assessment Community of Practice (P&RA CoP) Webinar

June 3, 2014
Outline

- **FEP Analysis Overview**
 - FEP analysis supplements scenario development, PA modeling, and the safety case
 - FEP analysis for Deep Geologic Disposal of Spent Nuclear Fuel (SNF) and High-Level Radioactive Waste (HLW)
 - FEP Analysis for Near Surface Disposal of Low-Level Waste (LLW) and Intermediate Level Waste (ILW)

- **FEP Analysis Approaches**
 - Traditional Bottom-Up
 - Top-Down, Bottom-Up for LLW/ILW Disposal
What is a FEP?

- **Feature**
 - An *object, structure, or condition* that has a potential to affect repository system performance (NRC 2003, Section 3)

- **Event**
 - A natural or human-caused *phenomenon* that has a potential to affect repository system performance and that occurs *during an interval that is short* compared to the period of performance (NRC 2003, Section 3)

- **Process**
 - A natural or human-caused *phenomenon* that has a potential to affect repository system performance and that occurs *during all or a significant part* of the period of performance (NRC 2003, Section 3)

- **A “FEP” generally encompasses a single phenomenon**
 - A repository is comprised of engineered and natural *features*
 - A FEP typically is a *process or event acting upon or within a feature*
 - FEPs can be defined at various levels of detail
What is FEP Analysis?

FEP analysis is part of a broader performance assessment (PA) methodology that supports:
- Scenario Development
- Implementation in a PA Model
- Safety Case and Safety Functions

FEP analysis includes the following steps:
- FEP (Phenomena) Identification
- FEP (Phenomena) Screening
FEP Analysis for SNF/HLW Disposal

- Long history of FEP analysis, starting in the early to mid-1980s
 - Backup slides provide references
- FEP analysis is promoted by international organizations for deep geologic disposal of SNF/HLW
 - International Atomic Energy Agency (IAEA) (IAEA 1983; 2011)
 - Nuclear Energy Agency (NEA) (NEA 1992; 2012)
- FEP analysis is used in all advanced repository programs for deep geologic SNF/HLW repositories
 - U.S.
 - Waste Isolation Pilot Plant (WIPP) (DOE 1996; 2009)
 - Yucca Mountain Project (YMP) (BSC 2005; SNL 2008; Freeze and Swift 2010)
 - DOE-NE Used Fuel Disposition Campaign (UFD) (Freeze et al. 2010; 2011)
 - NEA International FEP Database (NEA 1999; 2006)
 - Sweden, Switzerland, Belgium, U.K., Canada, US (WIPP)
 - Other Countries
 - Germany, Japan, Finland, France, South Korea, Spain, Netherlands
FEP Analysis for LLW Disposal

- **FEP analysis has been undertaken for near surface and borehole disposal of LLW (and ILW)**
 - General Lists, originating from NEA International FEP Database for SNF/HLW
 - IAEA Improvement of Safety Assessment Methodologies (ISAM) for Near Surface Disposal Facilities FEP List (IAEA 2004)
 - DOE-NE UFD LLW (Jones 2011)
 - Project-Specific Lists
 - U.S.: Greater Confinement Disposal (GCD) Facility (Guzowski and Newman 1993)
 - U.S.: Clive UT LLW Disposal Facility (Tauxe 2012)
 - Canada: Ontario Power Generation (OPG) Deep Geologic Repository (DGR) for LLW/ILW (Garisto et al. 2009; www.nwmo.ca/dgr)
FEP Analysis for LLW Disposal

- 381 DOE UFD LLW FEPs (Jones 2011)
 - Shallow (< 100 m depth) disposal concepts
 - Near Surface Facility
 - Intermediate Depth Borehole
 - FEP sources (1194 total FEPs)
 - UFD SNF/HLW FEPs (Freeze et al. 2011)
 - IAEA ISAM Co-ordinated Research Project (IAEA 2004)
 - Greater Confinement Disposal Facility (Guzowski et al. 1993)
 - Ontario Power Generation (OPG) Deep Repository for LLW/ILW (Garisto et al. 2009)
 - SNF/HLW Deep Borehole Disposal (Brady et al. 2009)
 - Drigg Low Level Waste Repository (Phifer 2011)

- Differences from SNF/HLW FEPs are:
 - more LLW FEPs related to proximity to surface
 - *surficial events and processes* (e.g., subsidence, erosion, surficial transport)
 - *human intrusion*
 - more LLW FEPs related to additional EBS features
 - *engineered covers, disposal units* (e.g., concrete vaults)
 - *underlying layers* (e.g., drains, geomembranes, etc.)
FEP Analysis – Traditional Bottom-Up Approach

- **Scenario Development**
 - The included FEPs define the range of possible future states (i.e., scenarios) of the system

- **FEP Screening**
 - The specification of a subset of important FEPs that individually, or in combination with other FEPs, contribute to long-term performance

- **FEP Identification**
 - Development and classification of a list of FEPs that capture the entire range of phenomena potentially relevant to the long-term performance of the repository system
FEP Analysis – Traditional Bottom-Up Approach

Pros and Cons

- **Results in a large number of FEPs**
 - NEA FEP Database (NEA 2006) is the basis for most FEP lists
 - NEA FEP list contains ~2000 FEPs from 10 international programs in 6 countries
 - DOE UFD LLW FEP list contains 381 FEPs

- **Difficult to uniquely categorize and screen**
 - Considerable redundancy and overlap in the large number of NEA FEPs
 - Screening of overlapping FEPs leads to situations where individual FEPs are partially included and partially excluded
 - Application of quantitative screening criteria not always possible

- **Time consuming and costly**
 - Acceptable for a large national repository program
 - Cost prohibitive for smaller LLW sites

- **Helps to demonstrate comprehensiveness of the FEP list**
 - Although comprehensiveness can never be “proven”
FEP Analysis – Top-Down Reality

- **PA Model Implementation**
 - Apply “favored” code to simulate “inherent” scenarios and FEPs

- **Scenario Development and FEP Screening**
 - Included scenarios and FEPs are phenomena that are represented by the conceptual/numerical models in the selected code
 - e.g., waste degradation/source term, flow and transport
 - FEP screening and exclusion is not systematic or comprehensive
 - Guided by expert judgment and experience rather than a formalized process

- **FEP Identification**
 - Provides a bottom-up audit of included FEPs and scenarios
 - Supports demonstration of comprehensiveness of FEP list
 - Confirms adequacy of capabilities in “favored” code
 - Identifies new FEPs to be implemented through alternate code, code modification, and/or parameter adjustment
FEP Analysis – Top-Down, Bottom-Up Approach

Pros and Cons

- **Top-down development of phenomena models, scenarios and FEPs**
 - Provides efficient organization/mapping of phenomena
 - Level of effort can be commensurate with project scope and budget
 - Level of detail (fewer broad scenarios/FEPs vs. many detailed scenarios/FEPs)
 - Rigor level must meet expectation of regulators

- **Bottom-up FEP identification**
 - Provides a check on comprehensiveness of scenarios/FEPs
 - Use an existing FEP list as an audit
 - Supports systematic documentation of FEP screening

11 June 3, 2014
FEP Analysis – Top-Down, Bottom-Up Approaches

- Top-Down from General NEA SNF/HLW FEP Database Categories
 - Features must be adapted for LLW
Top-Down from FEP Matrix

- **Matrix Rows = Features**
- **Matrix Columns = Process / Events**
- **Matrix Cell contains all FEPs related to the “Process/Event” acting upon or within the “Feature”**

 - e.g., hydro processes in the backfill

Table:

<table>
<thead>
<tr>
<th>Features</th>
<th>Characteristics</th>
<th>Processes</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste Form and Cladding</td>
<td>Mechanical-Mechanical</td>
<td>Waste and Engineered Features</td>
<td></td>
</tr>
<tr>
<td>Waste Package and Internals</td>
<td>Thermal-Hydrologic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buffer/Backfill</td>
<td>Chemical-Biological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emplacement Tunnels/Drifts and Mine Workings</td>
<td>Thermal-Transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seals/Plugs</td>
<td>Thermal</td>
<td>Radiation</td>
<td>Other</td>
</tr>
<tr>
<td>Host Rock (Repository Horizon)</td>
<td>Long-Term Geologic</td>
<td>Nuclear Criticality</td>
<td></td>
</tr>
<tr>
<td>Other Geologic Units (non-Repository Horizon)</td>
<td>Geosphere</td>
<td>Early Failure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Seismic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Igneous</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Human Activities (Long Timescale)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other</td>
</tr>
<tr>
<td>Biosphere</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repository System</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Freeze et al. (2013)
FEP Analysis – Top-Down, Bottom-Up Approaches

- **Top-Down from Specific Repository Phenomena**
 - Example here is SNF/HLW Repository in Bedded Salt

Processes and Events

Features

Processes and Events

- **Far Field** (Host Rock, Interbeds)
 - Advection
 - Diffusion
 - Sorption
 - RN Decay and Ingrowth

- **Near Field** (Backfill, DRZ, Shaft Seals)
 - Salt Creep Closure
 - DRZ Evolution
 - Shaft Seal Evolution
 - Chemical Interactions
 - Thermal Effects

- **Source Term** (WF, WP)
 - RN Inventory
 - WF Degradation
 - WP Degradation
 - Gas Generation

- **Waste Form (WF)**
- **Waste Package (WP)**
- **Host Rock (Intact Halite)**
- **Aquifer**
- **Biosphere** (Aquifer, Receptor Well)
 - Dilution
 - Water Consumption
 - Dose Conversion Factors

June 3, 2014
FEP Analysis – Top-Down, Bottom-Up Approaches

- Top-Down from Specific Repository Phenomena
 - Example here is Generic Near-Surface Facility (from Seitz 2014)
FEP Analysis – Top-Down, Bottom-Up Approaches

- Bottom-Up Audit using UFD LLW list (381 FEPs)

Assessment Basis = 10 FEPs

External Factors = 76 FEPs

EBS = 171 FEPs

Biosphere = 72 FEPs

Geosphere = 52 FEPs

Lateral diversion would occur for above-grade emplacement of wastes only if water inflow into emplacement volume exceeds downward water outflow.

Gaseous radionuclide transport between emplaced waste and top of cover by diffusive transport. Radionuclide interchange between gas and water with those in water flowing downward.

Diffusive and advective transport in drain layers (solubility limits and reversible sorption)

Adective/dispersive transport (reversible sorption)
Specific FEP from UFD LLW list

<table>
<thead>
<tr>
<th>FEP Number</th>
<th>FEP Title</th>
<th>FEP Description</th>
<th>FEP Screening (Included / Excluded)</th>
<th>Disposal Option (Near Surface / Borehole)</th>
<th>Basis for Exclusion</th>
</tr>
</thead>
</table>
| 2.1.05.02 | Engineered Covers and Their Degradation Processes | FEPs related to the performance of engineered cover materials above the emplaced waste vaults, trenches, etc. such as:
- soil layers
- rock armoring
- low permeability layers (earthen materials, geotextiles, geomembranes)
- drainage layers
- side slopes / side fill
Dегradation processes include:
- embrittlement, cracking
- loss of ductility
- movement
- hydrostatic pressure
- swelling corrosion products
- chemical effect of water on polymeric materials
- Fracturing of near field rock (such as by initial stresses during excavation, ice sheet loading/unloading or seismic activity) with subsequent impact on containers already compromised by other degradation mechanisms. Gas pressure may enhance cracking in the excavation disturbed zone. | Included | | |

Jones (2011) did preliminary screening for two generic designs
FEP Analysis – Top-Down, Bottom-Up Approaches

Bottom-Up Audit using IAEA LLW FEP list (IAEA 2004)

- **Specific FEP**

<table>
<thead>
<tr>
<th>FEP 2.1.05 Engineered barrier system characteristics and degradation processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition: FEPs related to the design, physical, chemical, hydraulic etc. characteristics of the cavern/tunnel/shaft seals at the time of sealing and closure and also as they may evolve in the repository, including FEPs which are relevant specifically as cavern/tunnel/shaft seal and cap degradation processes. (Effect on hydrology / flow – change over time).</td>
</tr>
<tr>
<td>Comment: Cavern/tunnel/shaft seal and cap failure may result from gradual degradation processes, or may be the result of a sudden event. The importance is that alternative routes for groundwater flow and radionuclide transport may be created along the various layers and tunnels and/or shafts and associated EDZ (see FEP 2.2.01).</td>
</tr>
<tr>
<td>Key Concepts, examples, and related FEPs:</td>
</tr>
<tr>
<td>- Engineered caps (cover)</td>
</tr>
<tr>
<td>- Cover degradation</td>
</tr>
<tr>
<td>- Intrusion resistance caps</td>
</tr>
<tr>
<td>- Cap materials: clay, concrete</td>
</tr>
</tbody>
</table>
Conclusions

- Practical FEP analysis can be performed at a level of effort commensurate with project scope and budget
 - Supports scenario development, PA modeling, and the safety case
- **Top-down, bottom-up approach for LLW disposal**
 - Top-down scenario development, supplemented by bottom-up FEP analysis
 - Identify key scenarios
 - Build a top-down feature-based organizational structure (e.g., matrix)
 - Map key scenarios, FEPs/phenomena
 - Use existing FEP lists for audit
References

- Guzowski, R. V. and Newman, G., December 1993, Preliminary Identification of Potentially Disruptive Scenarios at the Greater Confinement Disposal Facility, Area 5 of the Nevada Test Site, SAND93-7100

References

- Phifer, M.; March 2011, *2002 LLW Repository PCSC – FEP Consideration*
FEP Analysis for SNF/HLW Disposal

- Early (mid 1980’s) FEP lists were generic
 - IAEA (IAEA 1983)
 - US NRC (Cranwell et al. 1990)
 - NEA (NEA 1992)

- More recent (1990’s) project-specific FEP lists and analyses are contained in the NEA FEP Database (NEA 1999, NEA 2006)
 - Canada – AECL (Goodwin et al. 1994)
 - Switzerland – NAGRA (NAGRA 1994)
 - USA – DOE WIPP (DOE 1996)
 - Sweden – SKI and SKB (Chapman et al. 1995; Miller et al. 2002)
 - UK – HMIP (Miller and Chapman 1993)
 - Belgium – SCK-CEN (Bronders et al. 1994)
FEP Analysis for SNF/HLW Disposal

- Additional project specific FEP lists not contained in the NEA FEP database
 - 1990s (summarized in NEA 1999)
 - Netherlands – ECN/RIVM/RGD (Prij 1993)
 - Spain – ENRESA (ENRESA 1995)
 - 2000s
 - NEA – Clay (Mazurek et al. 2003)
 - South Korea – KAERI (Hwang et al. 2006)
 - USA – DOE YMP (BSC 2005; SNL 2008; Freeze and Swift 2010)
 - USA – DOE NE (Freeze et al. 2010; Freeze et al. 2011; Freeze et al. 2013)
References for Backup Slides

