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Natural Gas and Biomass 

Natural Gas Biomass 

 High fluctuation of prices 

• Abundant supply in 
the United States 

• Low prices 
• Utilization of stranded 

gas reduces 
environmental 
damage 

• Prices more stable 
than natural gas 

• Reduce greenhouse 
gas emissions in the 
life cycle analysis 

 Ensuring sustainability of 
production over long 
horizon 

A hybrid biomass and 
natural gas energy 
system can bring 

synergistic outcomes 



BGTL Important Questions 

Q1: Can we produce liquid transportation fuels 
(gasoline, diesel, kerosene) using only 
biomass and natural gas? 

Q2: Can we address Q1 with a 50% reduction 
in lifecycle greenhouse gas emissions? 

Q3: Can we address Q1 and Q2 without 
disturbing the food chain? 

Q4: Can Q1, Q2, and Q3 be addressed at 
competitive prices compared to petroleum? 

Q5: Can we develop a framework for a single 
BGTL plant that considers (i) multiple 
natural gas conversion pathways, (ii) any 
plant capacity, and (iii) any product 
combination? 



Conceptual Design 

 Feed biomass and natural gas to produce 
gasoline, diesel, and kerosene via a synthesis gas 
(syngas) intermediate 

 Syngas is converted to liquid hydrocarbons via 
Fischer-Tropsch, MTG, or MTOD 

 CO2 can either be vented, sequestered, or 
consumed/recycled via the water-gas-shift 
reaction 

 Simultaneous heat, power, and water integration 
included during synthesis 

 Develop input-output mathematical models for 
each unit in the refinery 
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Process Synthesis Strategy 
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    BGTL Process: Biomass and Natural 
Gas to Liquids 
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Biomass Syngas to bypass 

reverse water-gas-shift 
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Biomass Syngas to reverse 

water-gas-shift 

 Reformed Gases 

CO2 Steam  

PSA Offgas 

Biomass Syngas Generation 
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Natural Gas Conversion 
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Syngas Cleaning and CO2 Recovery 

 [1]  Kreutz, T.G., E.D. Larson, G. Liu, R.H. Williams, 25th Pittsburgh Coal Conference, 2008. 

 [2]  NETL, 2010, DOE/NETL-2010/1397. 
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Hydrocarbon Production 

 Purpose of process units 
 Convert synthesis gas to raw hydrocarbon 

product 

 Remove aqueous phase and oxygenated 
species from raw hydrocarbon effluent 

 Key topological decisions 
 Hydrocarbons generated via methanol 

conversion or Fischer-Tropsch synthesis 

 Methanol to Gasoline (MTG) or Methanol to 
Olefins and Diesel (MTOD) 

 Fischer-Tropsch catalyst: Cobalt/Iron 

 Low-wax/high-wax Fischer-Tropsch 



Fischer-Tropsch Units 

 Catalyst type 
 Cobalt (no water-gas-shift reaction) 

 Iron (water-gas-shift reaction) 
 Forward water-gas-shift (fWGS) 

 Reverse water-gas-shift (rWGS) 

 Temperature 
 High-temperature (HT - 320 oC) 

 Mid-temperature (MT - 267 oC) 

 Low-temperature (LT - 240 oC) 

 Wax production 
 Minimal (Min-Wax: for maximum gasoline) 

 Nominal (Nom-Wax: to increase diesel) 
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Hydrocarbon Upgrading 

 Purpose of process units 
 Convert raw hydrocarbon product to final 

liquid fuels 

 Recover light gases for treatment 

 Key topological decisions 
 Upgrading of Fischer-Tropsch product 

 ZSM5 upgrading 

 Standard upgrading 

 Recycle of light gases 
 Gas turbine 

 Fuel combustor 

 Natural gas conversion 



Simultaneous Heat/Power Recovery 

 Incorporate heat engines with distinct operating conditions 
into the system to simultaneously minimize the hot/cold 
utilities and the recovered electricity 

 Lower amounts of utilities and recovered electricity reduce the 
overall cost of the process  increased profitability 
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Operating Conditions 

 Condenser Pressures (c): 1, 
5, 15, 40 bar 

 Boiler Pressures (b):  25, 
50, 75, 100, 125 bar 

 Turbine Inlet Temp. (t): 
500, 600, 700, 800, 900°C 
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Objective Function 

 Summation representing overall cost of 
liquid fuels production 
 Feedstock costs (CostF) 

 Electricity cost (CostEl) 

 CO2 sequestration cost (CostSeq) 

 Makeup freshwater cost (CostCW) 

 Levelized unit investment cost (CostU) 

 Overall model size: 16,739 continuous variables, 
33 binary variables, 16,492 constraints, and 345 
nonconvex terms  (nonconvex MINLP) 



Case Studies 

 Three case studies illustrate optimal topologies 
for 10,000 barrel/day BTL refinery  
 GDK: Gasoline, diesel, kerosene in US ratios 

 MD: Maximum production (≥75%) of diesel 

 MK: Maximum production (≥75%) of kerosene 

 Four case studies illustrate effect of capacity for 
GDK refinery 
 Extra-small capacity (1,000 barrels/day) 

 Small capacity (5,000 barrels/day) 

 Medium capacity (10,000 barrels/day) 

 Large capacity (50,000 barrels/day) 

 50% lifecycle GHG emissions compared to 
petroleum-based processes 

 Biomass type: Forest residues (45 wt% moist.) 



Capacity 

10,000 BPD 

Process Results: Topological Analysis 

 Operating temperatures for biomass gasification (BGS), auto-
thermal reforming (ATR), and water gas shift (WGS) are 
selected by the optimization model 

 Production of liquid fuels via Fischer-Tropsch or methanol 
conversion 

Operating temperature 
(oC) selected by MINLP 

model 
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used for US ratio and 
maximum kerosene 

A gas turbine and CO2 
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Methanol synthesis is used for 
US ratios and maximum diesel 
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ZSM-5 Y - - - 

Max Diesel 900 1000 -  -  -  -  - Y - - 

Max 
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900 1000 -  - 

Co 

LTFT 
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Capacity 

Operating 

Temperatures 
FT Unit FT 

Upgrading 

Methanol Gas 

Turbine 

CO2 

Seq.   
BGS ATR WGS Low Wax Nom. Wax  MTG MTOD 

1 kBD 900 1000 -  -  -  -  Y Y - - 

5 kBD 900 1000 -  -  Co LTFT ZSM-5 Y - - - 

10 kBD 900 1000 -  -  Co LTFT ZSM-5 Y - - - 

50 kBD 900 1000 -  - Co LTFT ZSM-5 Y - - - 

Output Fuels 

United States 
demand ratios 

Process Results: Topological Analysis 

 Topological differences are highlighted for different 
capacities 

 Natural gas conversion pathway is always through 
auto-thermal reforming 

Consistent gasifier 
temperature as 

capacity increases 

Cobalt LTFT unit is 
used as refinery 

capacity increases 

A gas turbine and CO2 
sequestration are not utilized 

MTG is used for all 
capacity levels 
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Case Study 

Propane Electricity
O&M Investment
Water Butane
Natural Gas Biomass
Total

Contribution to Cost Case Study 

($/GJ of products)  US Ratios 
Max 

Diesel 

Max 

Keroesne 

Biomass 2.58 2.47 2.34 

Natural Gas 3.76 3.82 3.77 

Butane 0.58 -0.36 0.00 

Water 0.02 0.02 0.02 

CO2 Seq. 0.00 0.00 0.00 

Investment 7.81 7.48 7.81 

O&M 2.06 1.98 2.06 

Electricity 0.60 0.84 0.57 

Propane -0.34 -0.03 0.00 

Total ($/GJ) 17.08 16.22 16.57 

BEOP ($/bbl) 84.57 79.65 81.67 

Overall Fuels Cost 

Small amount of 
electricity input 

Investment has 
the highest cost 

contribution 

Capacity 

10,000 barrels/day 

Feedstocks 
account for 40% 

of cost 

Break even oil prices between 
$80/bbl-$85/bbl 
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Case Study 

Propane Electricity
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Contribution to Cost Capacity 

($/GJ of products)  1 kBD 5 kBD 10 kBD 50 kBD 

Biomass 2.61 2.51 2.58 2.34 

Natural Gas 3.77 3.70 3.76 3.71 

Butane 0.53 0.55 0.58 0.56 

Water 0.02 0.02 0.02 0.03 

CO2 Seq. 0.00 0.00 0.00 0.00 

Investment 12.78 9.15 7.81 6.75 

O&M 3.38 2.42 2.06 1.78 

Electricity 0.59 0.84 0.60 0.63 

Propane -0.34 -0.34 -0.34 -0.34 

Total ($/GJ) 23.34 18.86 17.08 15.47 

BEOP ($/bbl) 120.26 94.69 84.57 75.36 

Similarity in 
amount of 
byproducts 

Similarity in overall 
cost of biomass and 

natural gas 

Investment 
provides largest 
difference in cost 

Output Fuels 

United States 
demand ratios 

Overall Fuels Cost 

Break even oil prices between 
$75/bbl-$120/bbl 



Case Study Biomass 
Natural 

Gas 
Butane Gasoline Diesel Kerosene LPG 

Vented 

CO2 
LGHG GHGAF GHGAE GHGI 

US Ratios -42.19 4.74 0.00 28.52 10.43 5.12 0.40 22.56 29.58 61.22 -2.05 0.50 

Max Diesel -40.48 4.82 0.00 10.61 36.32 - 0.04 19.02 30.32 63.53 -2.89 0.50 

Max 

Kerosene 
-38.29 4.75 0.00 10.61 - 34.09 - 18.92 30.09 62.15 -1.98 0.50 

Life-Cycle Analysis 

 Significant reduction from fossil-fueled processes 
 GHG emissions avoided from fuels (GHGAF) 

 GHG emissions avoided from electricity (GHGAE) 

 GHG emission index: GHGI = LGHG/(GHGAF + GHGAE) 

 No CO2 Sequestration necessary 

Bulk of emissions is from liquid 
fuels use and process venting 

Net lifecycle GHG emissions (LGHG) is 50% of 
fossil based processes 

Biomass is critical for 
emissions reduction 

Capacity 

10,000 barrels/day 



Conclusions 

 Developed an optimization framework for 
thermochemical-based conversion of biomass 
(perennial crops, agricultural residues, forest 
residues) and natural gas to liquid fuels 

 The process synthesis case studies suggest that 
liquid fuels can be produced at crude oil prices 
between $80-$85/bbl for a 10 kBD refinery 

 A 50% reduction in lifecycle GHG emissions 
from fossil-fueled processes is achieved in all 
case studies without CO2 sequestration 

 Results suggest that cost-competitive fuels can 
be produced using domestic biomass and 
natural gas with a significant reduction in the 
lifecycle GHG emissions 



Barriers to Consider 

 Development of front end engineering design, 
procurement, and construction of a 
demonstration or small size plant  

 Investment costs for capital expenditure 
needed 

 Continuous supply of sustainable biomass 
feedstock  

 Uncertainty and fluctuations in natural gas 
prices 
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