Nuclear Energy Advanced Modeling and Simulation

R. Shane Johnson
Deputy Assistant Secretary for Science and Technology Innovation

Overview for NEAC Review Meeting
December 19, 2013
Why NEAMS? Why pursue advanced modeling and simulation capabilities?

- When integrated with theory and experiment, modeling & simulation enhances opportunities for new insights into the complex phenomena occurring in the nuclear reactor.
- Advanced modeling & simulation offers the ability to improve the performance and safety of nuclear energy; NEAMS provides new capabilities & tools for doing so.
- These advancements can be deployed as user-friendly simulation toolsets to both the R&D community and industry – will impact existing and future reactors.
HUBS AND NEAMS – PARTNERSHIP AND COMPLEMENTARITY

Partnership
- Advance multi-scale, multi-physics computational methods for reactor simulations
- Demonstrate positive impact of models and simulations on NE technology

Complementarity
- CASL – focus on solutions to industry defined challenges
- NEAMS – focus on insights into performance and safety

“hubification” – using successful Hub R&D and business models to improve other programs
- Medium-long term objectives, plan
- Independent advisory boards
- Self-sustained user groups
- Funding stability

Positive Impact on NE technology
Modeling and Simulation Budgets

<table>
<thead>
<tr>
<th></th>
<th>FY-08</th>
<th>FY-09</th>
<th>FY-10</th>
<th>FY-11</th>
<th>FY-12</th>
<th>FY-13</th>
<th>FY-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEAMS</td>
<td>7,792</td>
<td>20,000</td>
<td>26,574</td>
<td>40,495</td>
<td>15,299</td>
<td>17,242</td>
<td>9,536</td>
</tr>
<tr>
<td>HUB</td>
<td>22,000</td>
<td>22,000</td>
<td>23,517</td>
<td>24,588</td>
<td>24,300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MOOSE-BISON-MARMOT – Core of the Fuels Product Line

The MOOSE-BISON-MARMOT codes provide an advanced, multiscale fuel performance capability

- **Atomistic/Mesoscale Material Model Development**
 - Predicts microstructure evolution in fuel
 - Used with atomistic methods to develop multiscale materials models

- **Advanced 3D Fuel Performance Code**
 - Models LWR, TRISO and metal fuels in 2D and 3D
 - Steady and transient reactor operations

- **Multiphysics Object-Oriented Simulation Environment**
 - Simulation framework allowing rapid development of FEM-based applications
Reactor Product Line Multiphysics/Multiscale Development Roadmap

Neutronics
Thermo Mechanics
Fluid Mechanics
Structural Mechanics
System Response

Applications and Usability
Validation and UQ
Supporting Elements

SQA including Verification
Reactor Product Line
Multiphysics/Multiscale Development Roadmap

PROTEUS
Nek5000 & Star-CCM+
Diablo
RELAP-7

Applications and Usability
Validation and UQ

MOOSE, CouPÉ, MOAB, MBCoupler, NiCE, MeshKit, VisIT

SQA including Verification
NEAMS Toolkit Component Map

NiCE, w/ VisIt

Coupé

Nek5000
- Fluid Dynamics
- Thermo Mechanics

PROTEUS
- Transport Solver
- Cross-Section Tools
- Reactor Kinetics
- Isotopic Depletion

Diablo
- Structural Mechanics
- Seismic Analysis

NEAMS Framework

RAVEN
- LWR, SFR and VHTR Properties and Correlations
- LWR, SFR and VHTR Safety Modules

RELAP7

Fuels Product Line
- BISON
- MARMOT

SHARP ToolKit
NEAMS Components and their Users

- RELAP-7 reactor safety
- Diablo structural mechanics
- PROTEUS neutron transport
- MC²-3 ultra fine cross sections
- NiCE user environment
- MOAB data backplane
- Nek5000 computational T/H
- MOOSE BISON MARMOT
NEAMS Reactor Product Line Validation

- **NEAMS will provide baseline validation for every physics module**
 - Left to end user to execute application specific validation based on their own PIRT, GDCs and FOM

- **Have established validation plans for every physics module**
 - Neutronics – Build on DIFF3-D/Variant validation basis
 - Structural Mechanics – Build on NIKE3D validation basis
 - Thermal Fluids – Custom validation plan
 - New DOE Data – MAX, NSTF, MIR – and NEUP data
 - International Collaborations
 - Russian Federation Collaboration (IBRAE, IPPE)
 - Euratom I-NERI
 - KAERI I-NERI
 - NEAMS Validation Pathways
 - Validation data requirements
 - Uncertainty quantification expectations
 - RELAP-7
 - Custom validation plan based on EPRI collaboration

- **Will validate integrated RPL toolkit using EBR-II SHRT data**
NEAMS Fuel Product Line Validation

- Issued Bison V&V Assessment Document 1.0
- Completed: 24 LWR cases, 13 TRISO cases
- Many more are needed; major emphasis for FY-14
 - FUMEX-II and -III priority cases
 - NNL collaboration on ENIGMA cases
- Participation in FUel Modeling under Accident Conditions (FUMAC), new IAEA Coordinated Research Project (participated in initial roundtable planning meeting)
- Develop systematic approach to frequently run all cases, compare results and update documentation
- Sensitivity analyses and UQ studies – DAKOTA and RAVEN
The Nuclear Energy University Programs (NEUP) and the Integrated University Program (IUP) have a well established competitive process for awarding R&D, infrastructure and scholarships and fellowships.

- NEAMS V&V included in the last two calls
- This year 43 pre-proposals received for NEAMS V&V
- In addition, appendix to the call included information on CASL and NEAMS data needs that might be served in response to calls from NE-5 and NE-7
Points to Remember

- NEAMS has a robust and growing user community
- NEAMS TOOLKIT is technology neutral with capability for simulations of LWRs, SFRs, and VHTRs
- NEAMS and CASL partner and complement each other, already making a difference and promising much more for the future
Next two slides give examples on International Collaboration

- With Halden we are doing bison runs to help design a 3d fuel experiment
- with the National Nuclear Laboratory of the UK, we are sharing our code and they are sharing their expertise and potentially, data.
INL is sharing:
- MOOSE/BISON software
- Experience with advanced computational modeling

NNL is sharing:
- Extensive experience with fuel performance modeling
- Extensive experience with code validation
- Potentially, a large number of nonproprietary LWR validation cases (>200)

NNL recently used BISON to study an AP1000 fuel rod. Preliminary comparisons to ENIGMA results were reported as “broadly comparable”. Further comparisons are needed.
Collaboration with Halden Reactor Project

- Several Halden experiments considered in our existing validation suite; raw data are available

- Validation to 3D experiment

- Jason Hales invited to guest lecture at the OECD-Halden Reactor Project Summer School, August 26-29, 2013
 - Topic - Special Modeling: 3D Models and their Application

- Currently simulating a unique double-encapsulated fuel thermal conductivity experiment for installation in 2014; aiding in experimental design