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Objectives
 

To assemble previous knowledge, fundamental underpinnings, and
 
recent research results into a framework promoting clarity of thought
 

•� Review conventional wisdom regarding CO and UHC sources, clarifying 

� � � � -� differences between heavy- and light-duty engines 

� � � � -� the influence of dilution 

•�	 Employ the results of homogeneous reactor simulations to clarify the 
impact of T, �, P and dilution on CO and UHC emissions 

•�	 Review the tools / diagnostics available to clarify dominant sources of 
emissions, and summarize studies that have identified important sources 
under various operating conditions 



      
      

 

 

        
                

     
  

 
 

  

   
 

  
  

     
   

 
 

   
   

 

   
  

 
 

 
 

            

      

For conventional HD diesel combustion, CO emissions 
stem from both fuel-rich and fuel-lean regions 

At high load, CO is 
dominated by under- CO @ constant � & T , P = 60 bar, �t=2 ms , 21% O2 

Soot/NOx contours from Kitamura, et al., JER 3, 2002 mixed fuel 4 
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� •� CO decreased with
 

increased mixing
 
� � - Increased Pinj
 
� � - Optimized swirl
 

At light load, CO can
 
be dominated by
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0� •� CO correlates with 600 1000 1400 1800 2200 2600
 
φig, inversely with Temperature [K] 
Tad, max 

� •� Can be increased see also Park and Reitz (Comb. Sci and Tech, 2007) and Golovitchev, 

with increased Pinj et al. (ICE2007) for detailed multi-dimensional calculations 
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With dilution, sources of CO change little
 

At low T, rich
 
CO contours 1% by volume (roughly 200 g/Kg-fuel), P = 60 bar, t = 2.0 ms
 

Soot/NOx contours from Kitamura, et al., JER 3, 2002
 4 
mixtures pro­
vide low CO:
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Conclusion:
 

Fuel mixed with
 

No combustion
 

(at a fixed, low
 
temperature
 
rich mixtures
 
with EGR 
produce more 
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sufficient O2,0
600 1000 1400 1800 2200 2600 CO production in early enough to 

Temperature [K] the low temperature allow 2 ms at 
oxidation phase is Behavior of detailed T>1600K, will 
impeded by EGR simulations is well-captured burn 
(major species only) (Park & Reitz, Golovitchev et al.) completely 



      

        
          

             
    

         
 

       

  

     

          
    

         
 

     

  

         

CO – Summary of recent LTC studies
 

Like conventional diesel combustion, CO emissions from low-temperature 
combustion systems can be dominated by either rich pockets (under-mixed 
fuel) or by lean pockets (over-mixed fuel) depending on load, EGR rate, SOI, 
etc. (2005-01-3837, 2006-01-0197, 2007-01-0193) 

•�	 When under-mixed fuel dominates CO emissions, emissions can be 
reduced by 

� -� Increased injection pressure (see also MTZ Sept 2003) 

� -� Appropriate injection timing/targeting 

� -� Formation of beneficial late-cycle flow structures
 

� -� Increasing boost (both � and Δ are increased) (see also 2006-01-3412,
 
� � Colban, et al. SAE 2008)
 

•�	 When over-mixed fuel dominates CO emissions, emissions can be 
reduced by 

� -� Increasing boost (increased reaction rates dominate) 

� -� Reducing Pinj (2006-01-0076) 

� �� Dilution has little influence on the completion of CO oxidation
 



      
      

 

 

        

 
 

 
 

               

    
  

  

  

 
  

  

   

  

  

Potential UHC sources include poorly mixed, fuel-rich 
regions, fuel-lean regions, and low temperature regions 

Poor mixture formation 

� -� Low injection velocity UHC @ constant � & T, P = 60 bar, �t=2 ms, 21% O2 
Soot/NOx contours from Kitamura, et al., JER 3, 2002 � -� Large droplets 4 
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For well-optimized HD engines, two UHC sources 
are generally thought to dominate 
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Conventional strategies to reduce UHC:
 

� � Reduce sac volume 

� Decrease φig 
� � � -� Increase compression ratio 
� � � -� Increase coolant temperature 
� � � -� Increase Tintake 
� � � -� Increase displacement 

� � Optimize mixing 
� � � -� Nozzle hole number 
� � � -� Nozzle hole area 
� � � -� Swirl 
� � � -� Bowl design 
� � � -� Micro-holes - Not! (SAE 2005-01­
� 0914)
 

� � Increase boost 

� Increase cetane number (SAE 2004-01­
�

?
 
1868)
 

Undesirable for LTC or high power density applications
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For light-duty engines, additional UHC sources become 
important 

Increased importance 
due to smaller displacement 

Liquid films 

� -� Survive multiple 
Complete mixing more difficult due engine cycles 
to lower global � (high power density) 

� -� Delay vaporization 
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-� More significant for 

� � re-entrant bowls 

� •� Post-injection (not well understood) 
remain important � •� Close pilot injections 
at light load � •� Reduce spray asymmetry
 

� •� Optimize mixing (swirl, bowl design, targeting)
 

and mixing
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60 

quench layers
 reduce light-duty UHC:
 
•� Increase bowl diameter
 20 

high-squish, 

Lean mixtures 

0 •� Disrupt film formation 
1400 1800 2200 2600 � (may impact high-load Temperature [K] 

performance) 



      

 

 

 

        
             

    
  

   

   
     

   

    
  

  
 

    
    

  
  

  
 

   
 

   
 

 
 

   
 

   
   

         

What happens when we add significant EGR?
 

Like CO, UHC yield is not strongly influenced by dilution
 

EGR promotes HC contours 1% of fuel carbon, P = 60 bar, t = 2.0 ms 
low temperature 
formation of 
non-fuel UHC 
- � Enhanced CO 

production, too 

EGR may reduce 
UHC emissions 
-�	 "re-burning" 

recirculated UHC 
- � Enhanced low
 

temperature 
oxidation (see also 
JSAE 20030230)
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Low HC yield is
 
observed from
 
moderately rich 
mixtures 

In the region of
 
most interest,
 
EGR has little
 
influence
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Tools available to identify UHC sources
 

•� Cycle-resolved UHC measurements obtained via fast FID (2007-01-1837)
 

•� Load / parameter sweeps to identify controlling processes 

•� Optical measurements 

� -� Liquid film imaging (2007-01-1836)
 

� -� Imaging of in-cylinder UHC (2007-01-0907; Proc. Comb Inst. 31, 2963-2970)
 

•� Modeling predictions 

� -� Homogeneous reactors 

� -� Multi-dimensional simulations using detailed kinetics (Park & Reitz, CST 2007) 

� -� Liquid impingement calculations 

•� UHC emission behavior contrasted with CO emissions 

•� Speciated UHC measurements 

•� Fuel effects 



     
        

 

 

 

 

 

        

 

   
    

    
     

    
      

     

          

 

 
  

          

Homogeneous reactor modeling studies help identify 
situations which result in high CO but low HC 

HC=1% fuel carbon, CO = 1% by volume, P = 60 bar, 12% O2, Yield at 2 ms
Soot/NOx contours from Kitamura, et al., JER 3, 2002 4 
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Conversely, high HC but low CO may be observed
 

Cold crevices regions can 
result in high HC with very 

HC=1% fuel carbon, CO = 1% by volume, P = 60 bar, 12% O2, Yield at 2 ms
Soot/NOx contours from Kitamura, et al., JER 3, 2002 4 
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Speciation of HC emissions can provide information 
on the sources of UHC 
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UHC summary
 

•�	 Like CO emissions, UHC can stem from either rich pockets (under-mixed 
fuel) or by lean pockets (over-mixed fuel). Direct in-cylinder imaging 
studies have shown either source can dominate, depending on conditions 
and engine geometry (2007-01-0907; Proc. Comb Inst. 31, 2963-2970; 2007-01-1836) 

•�	 Unlike CO, UHC emissions can also stem from cold boundary layer or 
crevice regions. This source may also dominate under some conditions. 

•�	 Homogeneous reactor simulations suggest that dilution has only a small 
effect on UHC emissions at a fixed T and �. 

•�	 EGR may reduce UHC emissions stemming from cold regions (at the 
expense of increased CO emissions). There is little influence of dilution on 
UHC emissions in bulk gases. 

•�	 Boost increases both chemical rates and mixing rates, and can reduce UHC 
stemming from over-lean as well as over-rich regions (Careful! There may 
be a soot penalty) (Colban, et al., SAE 2008) 



            
         

       
      

       

      

  

       

   

         
 

Closure
 

•� There is no simple answer to the question "What is the dominant 
source of CO & UHC emissions in low-temperature diesel 
combustion systems. Under-mixed fuel, over-mixed fuel, and 
crevice/wall layers can all play important roles 

•� Understanding and controlling the mixture formation process 
including 

� � � � � - � Sufficiently rapid mixing of fuel-rich regions 

� � � � � -� Avoidance of over-mixing 

� � � � � -� Avoidance of HC in crevices and quench layers 

� � � � � -� Avoidance of liquid films 

�	 is key to the successful development of low-temperature diesel 
combustion systems 




