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Olil sands derived fuels:

close to home, large supply
compatible with petroleum infrastructure
some chemistry differences

e OUTLINE OF TALK
— 2006 vision
— Advanced characterization —down to molecular level
e how far do we need to go?
— HCCI engine
— Fuel performance effects
o different chemistry
e new opportunities / potential problems?
— Conclusions
— Future plans
e (We are not done yet!)
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Cetane Performance and Chemistry Comparing Conventional
Fuels and Fuels Derived from Heavy Crude Sources
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Fuels

 Fuels have specifications

— Cetane, octane, distillation, vapor pressure, flash point,
stability, etc.

« And simple chemistry
— Sulfur, aromatics, olefins
« And more chemistry
 And are eventually mixtures of individual molecules

— How far do you need to go to control manufacturing and
quality?

— How far do you need to go to understand and optimize?
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Oil sands fuels and refinery intermediates

e Provided by Shell Canada (now Royal Dutch Shell)
e 17 fuels and refinery intermediates derived from oil sands crude
— Both coker and hydrocracker upgrading
— 33 to 55 cetane
— 196 to 336 °C T50
— Diverse chemistry
e 3to 20% normal paraffins
e 8t0 19% iso paraffins
e 41to 63% cyclo paraffins
e 15to 38% aromatics,
e 0to 2% olefins
e Majority treated to ultra low sulfur specs
— good looking, good smelling
— not your father’s oil sands fuels
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HC types, molecular weight, polarity

439 by HC type, 2D GCMS
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Variations on 2D-GCMS spectra

FUEL 606 FUEL 444 FUEL 530 FUEL 438

GOOD ISFC GOOD ISFC POOR ISFC POOR ISFC
LOW CETANE MID CETANE HIGH CETANE LOW CETANE
LOW T50 MID T50 MID T50 HIGH T50

NON-POLAR
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HCCI engine

e Defined here as fully premixed, dilute combustion with
ignition initiated kinetically near top of compression stroke

e Advantages
— Potential for more efficient combustion
— Low NOx and low smoke
— Simple platform for fuels research

e Same chemistry processes occur in low NOx LTC or PCCI
engines, but more mixed up in time and space
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ORNL HCCI research engine

INTAKE AIR HEATER

ENGINE

MODIFIED PISTON
WITH SPHERICAL
COMBUSTION BOWL

BELT DRIVE Engine Displacement (cc) 517

Bore (cm) 9.7
Stroke (cm) 7.0
Compression Ratio 10.5:1
Intake Valve Opening (CA deg) 710
Intake Valve Closing (CA deg) 218

CONSTANT SPEED Exhaust Valve Opening (CA deg) 499

MOTORING DYNO Exhaust Valve Closing (CA deq)
Intake Air Temperature (°C)
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HCCI engine behavior

e A fuel produces ISFC and combustion trade-offs as a function of
combustion phasing

e A collection of fuel and engine characteristics determines where

optimum occurs

e Hence, the fuel story also depends on the engine story

Power output and economy
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Oil sands fuels showed both engine
specific and fuel specific trends

10.5 gm/min fuel rate
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Ability to advance timing limited by NOX,
dP/dCA, peak pressure, noise, etc.

NOx at 10.5 gm/min fuel rate
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Ability to retard timing limited by
misfire, high CO, high HC, high COV

CO ppm vs. MFB50 at 10.5 gm/min fuel rate
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Best achievable ISFC shows correlation to

cetane and T50
best ISFC vs. cetane Best ISFC vs. T50
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cetane and T50 also correlate to energy content
and % aromatics and % heavy aromatics and
density and other chemistries and etc.
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Higher cetane fuels show easier ignition,
more low temperature heat release

calculated in-cylinder temperature histories ‘
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Summary

e Fuel characterization can be carried down to detailed molecular
level

e Lower cetane and lower T50 provided better performance in our
engine, with these fuels

e Higher cetane promotes easier ignition, more low temperature heat
release

e Trends uncovered are similar to those uncovered with conventional
diesel fuels

e Detailed chemistry effects still to be analyzed for
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Now what?

Collaboration is continuing

— NCUT, CANMET, PNNL, ORNL, Royal Dutch Shell

— Add other companies, labs, universities

e Resolve various analytical methods

e Deeper dive into performance — beyond cetane and distillation
— Detailed chemistry effects, statistical analysis

e Confirm and broaden results

— New set of refinery based fuels and intermediates

— Doping with surrogate compounds (if appropriate)

— Extend to oil shale, FT, biodiesel

e Provide information which could be used to support refinery
process development or fuel specification decisions
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