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What about the state of “Engineering’?

Diesel Particulate Filtration

 Engineered solutions are expanding
— Heavy duty retrofits
— European light duty

 There WILL be engineered solutions to 2007 US
Heavy Duty diesel

e Manufacturers are “polishing” their approaches

2 Pacific Northwest National Laboratory

Battelle U.S. Department of Energy
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Engineers will always make do...

-_ i

CONFIDENTIAL: Prototype 2007 HD truck — field test unit

3 Pacific Northwest National Laboratory
Barielle U.S. Department of Energy
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Diesel Particulates

 What do we know and what don’t we know?

 We do know they are
— Structurally homogenous (or perhaps comparable)
— Chemically variable
— Very dynamic
— Sticky
 We don’'t know
— Precisely how they oxidize
— How to measure them in-situ
— Precisely how they vary with operating conditions, design, aging
— How to model DPFs from first principles

S Pacific Northwest National Laboratory
Barielle U.S. Department of Energy
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Particulate Life Cycle - A Natural Example

Formation
' Deposition Transp_ort/
Evolution
Batielle B | - ] 6 Pacific Northwest National Laboratory

U.S. Department of Energy
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SOURCE

7 Pacific Northwest National Laboratory
Barielle U.S. Department of Energy
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Today's Diesel Engine:

4 stroke, electronic DI, Turbocharged with VG or WG, Intercooled, 4

valve, central vertical injector, low swirl, high EGR...

8 Pacific Northwest National Laboratory
Barielle U.S. Department of Energy
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2010 Diesel Engine:

?

What will the particulates from this engine look like

?

Diluted combustion (eg HCCI) attempts to end the
story at this point {numerous OFCVT supported
projects — see Advanced Combustion
Technologies sessions.}9

Pacific Northwest National Laboratory
Barielle U.S. Department of Energy
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FORMATION

10 Pacific Northwest National Laboratory
Batielie U.S. Department of Energy
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Working Definition

NOTE: Much of this understanding evolved from
DOE OFCVT funded research at SNL and LLNL

Temperatures ~1600K 270K
950K
37OK ! -
O‘\-—
Cold X Rich Fuel/Air CF? 20&
Fuel Warm Mix @ = 4 proqycts of Rich i
Air Combustion NOXx

CO, UHC, & Particles

VAR U

Pyrolitic PAH Planar Spherical Particle
Aromatics Formation Graphitic Formation and .
Growth Growth Agglomeration

ref: Cummins and SNL 11 - .
Battelle Pacific Northwest National Laboratory

U.S. Department of Energy
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The SpherUIe (ref: Glassman, 1977)

~ 1% by weight hydrogen (or CgH)

most commonly 10-50nm in diameter

~104 crystallites (from XRD)

crystallite is 5-10 sheets of carbon (electron diffraction)
Individual sheets are like ideal graphite

each contain about 100 carbon atoms

each are approx 2-3nm on a side

sheets are randomly stacked (i.e. turbostratic)

Interlayer spacing is 0.344nm (vs. 0.335 for graphite)
average spherule contains about 10° to 10° carbon atoms

12 Pacific Northwest National Laboratory
U.S. Department of Energy
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Spherules Are All The Same But Different

RL Vander Wal, A.J. Tomasek / Combustion and Flame 134 (2003) 1-9 5
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Fig. 3. HRTEM images of the soots derived from pyrolysis of a) benzene; b) ethanol; and, ¢} acetylene. The images are of the
nascent soot, before oxidation.

NOTE: DOE OFCVT funded research currently proposed

13 Pacific Northwest National Laboratory
Barielie U.S. Department of Energy



Muntean_EmissionControlTechPart2 DEER 2005.ppt

Spherule Aggregation Yields Particulate
a.k.a. acinoform carbon

A A Onischuk et al | Aerosol Science 34 (2003) 383403 399
L
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Fig. 20. TEM micrograms of soot aggregates formed at different times of coagulation ¢ in the afterflame zone. (a) 1= 10 s,
chaindike aggregates; (b) r = 140 5, chain-like aggregates, and (¢} ¢ = 1000 s, compact aggregates. Initial time =0 s
corresponds to the moment of sucking at the height above burner of 30 cm (see Fig. 1)

14 Pacific Northwest National Laboratory
Barielle U.S. Department of Energy
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Reality - Soot Bouillabaisse

EDX elemental mapping of internally mixed o c/ 02 kmpartle
diesel soot particle of ~2 pum size. 2] si
ref: PNNL data, ESEM/EDX analysis 2]
NOTE: DOE funded research at PNNL | o e
Energy, keV
Batielle 15 Pacific Northwest National Laboratory

U.S. Department of Energy
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TRANSPORT/EVOLUTION

16 Pacific Northwest National Laboratory
Barielle U.S. Department of Energy
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Particulate Evolution Effects

\ Exiv. Manliokd /
2500 rpm X P4 Particle size

P1 Ood-Catalyst 1 ' Cod-Catalyst 2

25 % load & concentration

NOTE: DOE OFCVT funded research at ANL

17 Pacific Northwest National Laboratory
Battelle U.S. Department of Energy
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Diesel Particulates Age

S FM just afler emission
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Mioro Pore Valume

Digmeatar (Fm)

Fresh soot has more micropores and
higher activity than older soot

satielie e oo a T N beparment of Enrey
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DEPOSITION

19 Pacific Northwest National Laboratory
Batielie U.S. Department of Energy
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Soot Filter Devices

Extremely effective

Captures most forms of PM

Many physical designs
Many material choices

Majority rely on...

> Cake filtration, or
> Depth filtration, or
> Both

They plug up

Batlelle
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Soot Cake

Pacific Northwest National Laboratory
U.S. Department of Energy
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Action is at the Deposition Scale

> filter plugging \
> thermal failures

| ' Cake Layer
> fl Itratl O n « only ~15-50 microns thick
p e rfO rm an Ce * Involves heat & mass transfers,
] aerosol deposition, surface
> S1Z€e an d COSt chemistry, catalysis...

efficient regen.

J

21 Pacific Northwest Natio ILI ratory
Batielle LU.S. Depa l of Energy
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Model Results — Deposit Formation

ref: CLEERS DPF

Substrate shown In
dark grey

Deposit density
Indicated by color

Initial deep bed
filtration

Transition to cake
filtration

NOTE: DOE OFCVT funaed research at PxNNL

Batlelle

Soot Deposits

Soot Deposits

22

Pacific Northwest National Laboratory
U.S. Department of Energy
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Model Results — Flow Field

* Soot has little o DO v
impact on flow field = | i
deep within
substrate (most of

the time)
 Bulk of flow passes a
through a few | ik ] ik

major flow routes

* Flow near surface
IS redistributed by .
dense deposits .|

23 Pacific Northwest National Laboratory
Barielle U.S. Department of Energy
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The State of the Science
The Multi-scale Dilemma

How do you experimentally validate the fine scale models?

How do you best add value to device scale models using the
fine scale models?

Particle Pore
10° 10° 107 10° 10° 10* 10° 10 10" 10°
(nm) (um) (mm) (m)
NOTE: DOE OFCVT funded research at PNNL/ORNL
n'&gters " .
Baneue Pacific Northwest National Laboratory

U.S. Department of Energy
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Destruction

25 Pacific Northwest National Laboratory
Barielle U.S. Department of Energy
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Destruction

Combustion Triangle

- Fuel
How does each part of the particle burn?

- Oxidizer
What is delivering the oxygen to the carbon and
how?

- Heat

What are the local heat and mass transfer
conditions?

Ultimately: Ce + 0, 2 CO,

26 Pacific Northwest National Laboratory
U.S. Department of Energy

Batlelle
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Shrinking Core Model

800

700 /

—4- Soot #1
= - Soot #2
N 600
£ -~ Model soot
3
< 5001
)
8 A
5o —
©
S o AN
o
@ A
A LN
200 —
[
100/ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70 80 %0
Integral Conversion (%)
BEI“E[IE Ref: PNNL & Cummlns 27 Pacific Northwest National Laboratory
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Reaction Kinetics

General form

- R(eaction Rate) = N, * k(T) * (P, Pn,0---)

- Where k(T) = temperature dependence

Simplest assumption

- k(T) =k, * exp(-E_/RT) “Arrhenius equation”

- E_ = activation energy

_ Other formulations envisioned, e.g. modified Arrhenius

Activation Energy

- Wide range reported in literature
. 36 kd/mol to 170 kd/mol (ref: Yezerets, et al 2002-01-1684)

- Highly dependant on methodology, H,0O, soot...

28 Pacific Northwest National Laboratory
U.S. Department of Energy
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The State of the Science
The Multi-scale Dilemma (again)

Model Results:

Chemistry, Mass, and Heat Transfer Intimately Coupled

'L"_JG: Emission Upstream gas temparature (*C)

> 700

DIESEL 800

| |WITH CERIA 500

| BASE 400
| DIESEL
| FUEL

300

200

100

. TIME o

SGE Conditiona @ O3 = 18 to 4%, HxO= 3%, M=halance,
SV=25000n"", temperature rampe=100"C 10 630°C in
1320% and stabdlisation at B30°C,
Fier loading : 2580 mm, 97 Nm
Figqure 3.  Thermal Gravimetric comparnson between
Cena addibzed and non additized particulate

Ref. Peugeot DPF SAE paper
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Soot Deposits

Pacific Northwest National Laboratory
U.S. Department of Energy
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Future Activities

OXIDATION

Incorporate “clean” data into models
- TGA derived reaction rates
~ also, reaction orders in carbon and oxygen

Translate “clean” data into appropriate global
parameters for device models
~ global rates are different than local rates

~ Ignition, flames, and propagation are confounding
effects

NOTE: DOE OFCVT funded research at PNNL (CLEERS)

30 Pacific Northwest National Laboratory
U.S. Department of Energy
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In conclusion - Much still to be done
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31 Pacific Northwest National Laboratory
Batielie U.S. Department of Energy
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