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Gasoline/Diesel PM Split Study

Characterize uncertainties in quantifying the contributions of PM
emissions from Sl and CI engines in the South Coast Air Basin

Source testing of gasoline- and diesel-powered motor vehicles using EPA’s and
WVU'’s transportable dynamometers (May-September 2001)

51 LDGV (9 groups of model years and mileage), 6 LDGV smokers and 2 LDDV
32 HDDV (3 weight class and 4 model-years groups) and 2 transit buses

Ambient samples (June -July 2001)

Downtown Los Angeles and Azusa - daily 24 hour for four consecutive weeks, composite
by day-of-week

Variety of locations with variable amount of gasoline and diesel traffic

Chemical analysis of parallel source and ambient samples by DRI and UWM.

Organic and elemental carbon, ions, elements, semi-volatile and particulate PAH,
hopanes, steranes, polar organics and alkanes.

Double-blind Chemical Mass Balance (CMB) receptor modeling by DRI and
UWM.



Vehicle Profiles — Carbon Fractions by IMPROVE-TOR
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Distributions of OC and EC fractions (IMPROVE) at
Azusa, Los Angeles N. Main and Source Locations

Fixed Ambient Sites Mobile Ambient Sampling Locations
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Emission Rates of Particulate PAH

Heavy-Duty Diesel Trucks Light-Duty Gasoline
0.60 0.04
[]corone
0.50 1 bghipe
) - 003 [lincdpy
€ 0.0 - E
S0 £ [ bapyrn
2 g Py
" @ Ml bepyrn
£ 030 2 0.02 >
o p 1 bbjkfl
S ke
—_ [%)]
8 020 - £ @ chrysn
= - -
£ 0.01 . [ baanth
|
0.00 0.00 == —
> @ = o 2 S S 2 S S
S o o = =2 S
§ 3 T 2 - I = —ICI) T =
! > (%] o ! 1 1
2§ 8 8 % s §E E
o T 3 © © = = =

Gasoline/Diesel PM Split Study, Fujita et al., 2005



Concentrations of Particulate PAH Iin Lube Oil
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Vehicle Profiles — Emission Rates of Steranes

Cl Vehicles Sl Vehicles
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Vehicle Profiles — Emission Rates of Hopanes
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Sl hi-load
Surface St
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¢ Downtown Los Angeles and Azusa - daily 24 hour for
four consecutive weeks, composite by day-of-week

® Variety of locations with variable amount of gasoline and
diesel traffic
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Source Contribution Estimates — Organic Carbon
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Source Contribution Estimates — Elemental Carbon

CI/SI (IMP)
Azusa

Sun - 22

WD - 19-28
Sat — 31
LANM
Sun-14

WD -13-21
Sat -8

CI/SI (STN)
Azusa

Sun - 22

WD -17-31
Sat — 42
LANM
Sun-17

WD -10-18
Sat - 17

Fractional SCE

Fractional SCE

1.0

Elemental Carbon (IMPROVE)

0.8
0.6 -
0.4 -

0.2 -

0.0 -

Diesel ] Gasoline [1Residual

Elemental Carbon (STN)

LANM Sun

T
n
©
)
=
2

Azusa Sun
Azusa Mon
Azusa Tue
Azusa Wed
Azusa Thu
Azusa Fri

LANM Mon

LANM Tue

LANM  Wed

LANM Thu

LANM Fri

LANM Sat

[ ]

San Dimas Mon

Venice Sat

Rose Bowl Sat

1-405 Sun _ |




Source Contribution Estimates — Total Carbon
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Sensitivity of Apportionments to Use of EC in CMB Fit

SCE - Compression Ignition Exhaust

SCE - Spark Ignition Exhaust
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Scatterplot of STN-TOT EC Versus IMPROVE-TOR EC
for Ambient Samples (ug/sample)

200

150 -

100 -

STN-TOT

50 A

0 50 100 150 200
IMPROVE-TOR



STN versus IMPROVE EC for Cl and Sl Exhaust Samples
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Sensitivity of CMB Apportionments to Carbon
Measurement Protocol
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Figure 5. Correlations between measured and CMB-predicted ambient concentrations of indeno[123-
cd]pyrene, benzo(ghi)perylene, coronene and “elemental” carbon as measured by the TOR-IMPROVE
method.
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Figure 2a. Variations in CMB source contributions to ambient total particulate carbon with alternative

composition profiles for spark-ignition vehicle exhaust. Sensitivity tests were applied to mid-week 24-hour PM

samples from Azusa and Los Angeles N. Main.
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Figure 2b. Variations in CMB source contributions to ambient total particulate carbon with alternative

composition profiles for compression-ignition vehicle exhaust. Sensitivity tests were applied to mid-week
24-hour PM samples from Azusa and Los Angeles N. Main.



Summary of Findings

Sl apportionment is most sensitive to indeno[123-cd]pyrene,
benzo(ghi)perylene, and coronene and, to lesser extent, steranes and hopanes.

Sl apportionment is sensitive to abundances of these species in the profile.

These PAHSs are not detected in most diesel exhaust samples or in diesel fuel or
lubrication oil.

They are present in used Sl engine lubrication oil in similar proportions but
concentrations increase with age of the oil.

EC emission for Sl vehicles are minimal except in cold start and hard accels.

EC has strong influence on CI apportionment and is therefore dependent on
carbon measurement method.

Cl apportionment is ~ 40% greater using IMPROVE rather than STN data.

Spatial and temporal variations in relative Cl and SI apportionments are large.

ClI vehicles are the dominant source of EC and TC at Azusa and LANM. More equal
apportionment in urban background locations.

Significant fraction of the organic carbon during summer in the SOCAB cannot be
apportioned to directly-emitted PM emissions from motor vehicles.



Comparison of CMB Results by DRI
and UWM

Webcast

The DOE Gasoline/Diesel PM Split Study

California Air Resources Board
Chairman’s Air Pollution Seminar Series

Wednesday, September 7, 2005
1:30 p.m. - 3:00 p.m.
Training Room 1 East and West, First Floor
1001 | Street, Sacramento

http://www.arb.ca.gov/research/seminars/doe/doe.nhtm
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