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• High Selectivity
– NH3 + NOx + O2 N2 + H2O

N2O + H2O

• Urea Decomposition to NH3

– NH2-CO-NH2(l) NH3 + HNCO
– HNCO + H2O NH3(g) + CO2

• Minimize Competing Reactions
– Low T: 2NH3 + 2NO2 NH4NO3 + N2 + H2O
– High T: 4NH3 + 5O2 4NO + 6H2O
– 4NH3 + 4NO + 3O2 4N2O + 6H2O

X

Catalyst Development Issues



Typical Experimental Conditions

Temperature (°C) 450-125
NO (ppm) 280-175
NO2 (ppm) 70-175
NH3 (ppm) 350

O2 (%) 14
CO2 (%) 5
H2O (%) 4.6

GHSV (h-1) 30,000-140,000

• NH3:NOx in the feed is 1:1
•Powder catalysts diluted 1:1 with cordierite
•450 – 125 °C decreasing, 30 minute isothermal holds
• NOx conversion (%) defined as:
•N2O selectivity (%) defined as:  N2O / (N2O + N2)
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LEP Staged Testing Protocol

Catalyst performance evaluated:
1. Fresh, using stated typical experimental conditions
2. Fresh, as a function of NO:NO2 ratio

• 100% NO to 100% NO2

3. After hydrothermal aging
• 16 hours at typical experimental conditions at 

600°C*, 700°C, and 800°C
4. After sulfur aging

• 20 ppm SO2 at 350°C* or 670°C at typical 
experimental conditions (minus NH3) for 24* and 48 
hours

* Items in bold represent minimum performance 
requirement



Experimental Apparatus
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Hydrous Metal Oxide Synthesis

• Hydroxide Addition
Ti-alkoxide + Si-alkoxide + NaOH soluble intermediate

• Hydrolysis
soluble intermediate NaTi2O5H↓

• Acidification and Ion Exchange
Mn+ + n NaTi2O5H M(Ti2O5H)n + n Na+

• Impregnation incipient wetness (powder)

• Activation/Pretreatment (600°C in air for 4 h) Catalyst

• Monolith 
Catalyst + Al2O3 + H2O + grinding slurry

slurry + monolith final monolith

Methanol

Water
Acetone

425°C in air for 4 h



Effect of Synthesis Conditions on S.S.A.

• Less concentrated hydrolysis solution increases resulting surface area by 30% 
• May be attributed to slower rate of hydrolysis from decreased metal 

concentration
• Similar results seen with supports only
• No linear relationship between catalytic activity and surface area
• All samples were calcined at 600°C in air and degassed at 400°C for 14 h
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Comparison of Monolith and Powder Data

• Powders tested at high SV to simulate the contact time of 25 wt.-% catalyst on monolith

• High-loaded monoliths (>16 wt.-%) approach powder performance

0%

20%

40%

60%

80%

100%

100 150 200 250 300 350 400 450

powder

28 wt.-%

12 wt.-%

Temperature (°C)

N
O

x 
C

on
ve

rs
io

n
Powder

1:1 

50% NO2

140,000 
h-1

Monolith
s

50% NO2

30,000 h-1



Optimization of Catalyst Composition

• Change concentration of same two components
• Have the ability to tune catalytic performance

– tradeoffs in low and high temperature activity
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•Minor loss in activity after short term hydrothermal treatment
•More relative activity retained with D2
•Hydrothermal treatment at feed concentration (4.6% H2O)
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• C3 & n-C8 suppress conversion ca. 10% 
above 300°C, (HC oxidation)

• No change on addition of 60 ppm toluene 
(>12 h TOS)

• Activity recovered when HCs removed
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• Trends are important

Hydrocarbon Testing



Summary

• Optimizing synthesis parameters leads to enhanced 
catalyst surface areas
– Nonlinear relationship between activity and surface area

• Catalyst development performed under a staged 
protocol

• Catalytic materials with desired properties have been 
identified
– Meet stage requirements
– Performance can be tuned by altering component 

concentrations
– Optimization still necessary at low temperatures

• Better activity and tolerance to SO2
– V2O5-based materials ruled out because of durability issues

• Future work will focus on improving overall low 
temperature activity
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