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Overview

• HCCI stability and control continue to be major barriers to the 
implementation of HCCI

• Although the operating envelop of HCCI is expanding, it is likely 
that conventional combustion will still be used for some operating 
conditions

• Spark ignition has been used by others for engine starting and to 
assist transition to HCCI, but results relative to HCCI combustion 
control have been mixed

• HCCI engine platform is also being used to evaluate fuel effects
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Single cylinder research
engine used for studies

• Capable of HCCI, mixed mode, and 
conventional operation

• 500 cc, 11.34 C/R
• 2 valves, naturally aspirated
• Gasoline port fuel injection
• Spark ignition
• Fully variable valve actuation
• HCCI currently initiated by early 

exhaust valve closing
– “negative overlap”
– Retains heat in cylinder
– Retains internal EGR
– Typically operates at > 50% EGR
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Comparison of conventional 
combustion to HCCI combustion
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Comparison of conventional to
‘negative overlap’ HCCI combustion

IN CYLINDER TEMPERATURE, 1600-3.0,
CONVENTIONAL VS. HCCI
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EXHAUST RESIDUAL FRACTIONS, 1600-3.0, CONVENTIONAL 
VS. HCCI
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CYLINDER PRESSURE, 1600-3.0
CONVENTIONAL VS. HCCI
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HCCI has higher peak
cylinder pressure and
more rapid heat release

HCCI has higher
level of retained
exhaust

HCCI has later intake
valve opening

HCCI shows recompression of
retained exhaust due to early
exhaust valve closing

HCCI has lower
peak combustion
temperature

HCCI shows recompression of
retained exhaust due to early
exhaust valve closing
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Average results
1200 to 2400 rpm, 1.5 to 4.5 bar IMEP

• HCCI operation improved fuel economy by 12% vs. 
conventional

• HCCI operation reduced NOX emissions by 95% vs. 
conventional

• Spark assist slightly improved stability of HCCI 
combustion

• Some speed / load combinations would not run except 
spark assisted

• Only data from 1600 rpm, 3.0 bar IMEP will be presented in 
subsequent detailed analysis, similar results found at all 
speeds and loads evaluated
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Transition from conventional
to HCCI combustion
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Valve timing control for transition to HCCI
(“negative overlap”)

valve timing for transition from conventional to HCCI, 1600-3.0
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Transition from conventional to HCCI

Pressures and Temperatures, 1600-3.0
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Ignition and heat release characteristics, 1600-3.0
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Transition to HCCI, NOX and combustion stability
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HCCI performance

• Dilution with internally retained exhaust provides 
low NOX 

• Fuel efficiency gains associated with faster heat 
release and un-throttled operation

• HCCI allows stable operation at very high EGR 
rates

• Spark provides transition to HCCI mode
• Once in HCCI, spark can be left on or turned off, 

but it still has some effect
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Fuels comparisons
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Fuels test strategy

• Initial fuels matrix (complete)
– Indolene baseline
– Vary MON, fixed RON

• Second fuels matrix (in process)
– Indolene baseline
– Constant RON and MON
– Vary fuel chemistry
– One ethanol fuel

• Further work based on above results
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Fuels evaluated

RON MON DENSITY, 
60F RVP, PSI

GROSS 
HEATING 
VALUE, 
BTU/LB

IBP, C FBP, C FUEL 
BLEND

96.5 88 0.745 8.3 19550 31 198 full boiling 
range

97.4 80.9 0.822 3.8 18867 62 110 4 pure HC

99.5 86.8 0.76 3.2 19647 72 117
5 pure 

HC, 50% 
#1 and #3

96.3 94.5 0.695 1.9 20487 98 104 2 pure HC 
- PRF

Indolene

Fuel 1

Fuel 2

Fuel 3
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Test fuels composition

INDOLENE FUEL 1 FUEL 2 FUEL 3

Toluene xxx 60.0% 30.0%

Cyclopentene xxx 20.0% 10.0%

Cyclohexane xxx 10.0% 5.0%

n-Heptane xxx 10.0% 5.8% 1.5%

Iso-octane xxx 49.3% 98.5%



16
OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Comparison of fuels at 1600-3.0

1600-3.0 cylinder pressure
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Performance vs. MON, 1600-3.0

NOX AND ISFC VS. FUEL MON
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Performance vs. MON, 1600-3.0

CYLINDER PRESSURE VS. FUEL MON
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Summary

• Data demonstrates advantages of HCCI combustion over 
conventional throttled operation
– Better fuel economy
– Lower NOX emissions

• Spark assist can help transition to HCCI combustion and 
extend operating range and stability

• Spark assist can remain ‘on’ in HCCI mode since influence 
of spark can be varied by spark and valve timing

• Fuel properties (in this case – MON) have a large effect on 
HCCI operation

• Chemistry or volatility effects may also exist



20
OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Future work

• Second fuels matrix
– 8 fuels
– Constant RON and MON
– Chemistry and volatility differences

• Further explorations of combustion transitions, 
mixed mode operation, and methods of HCCI 
control
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