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Talk Outline
• Introduction

• Plasma-facilitated catalysis for NOx reduction
• Active catalysts
• What is the plasma doing?

• Catalyst synthesis and reactivity
• What is the optimum catalyst composition?
• Some optimization of catalyst synthesis

• Studies of the reaction mechanism
• Differences in rates of the back reaction (NO2 to 

NO) on different catalysts
• Concept of the Cascade Reactor
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Modeling of the Gas-Phase 
Plasma Reaction Mechanisms
Under lean-burn engine exhaust conditions, 
a non-thermal plasma is oxidative.
• A primary reaction is conversion of NO -> NO2

• The oxidation of NO in a NTP is promoted by added 
hydrocarbon.

• Added hydrocarbon is partially oxidized, and 
aldehydes are a crucial product as they are most 
reactive as reductant for NOx.

• Thermal catalytic reaction of aldehydes + NO2 yield 
activities of >90% for reasonable flow rates.

• Understanding the products of exhaust ‘reforming’ by 
the plasma has guided catalyst development efforts.
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NaNa--Y, BaY, Ba--Y, AluminaY, Alumina
NOx Conversion
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• Alumina effective at 
high temperature

• Zeolite effective at 
lower temperature

• Combination 
effective over wide 
range

Subsequently, we have developed alkali- and 
alkaline earth-exchanged zeolite-Y catalysts for 
plasma-assisted NOx reduction.

Panov, et al., SAE 2001-01-3513



U.S. Department of Energy 
Pacific Northwest National LaboratoryDEER Workshop, August 24-28, 2003

Talk OutlineTalk Outline
• Introduction

• Plasma-facilitated catalysis for NOx reduction
• Active catalysts
• What is the plasma doing?

• Catalyst synthesis and reactivity
• What is the optimum catalyst composition?
• Some optimization of catalyst synthesis

• Studies of the reaction mechanism
• Differences in rates of the back reaction (NO2

to NO) on different catalysts
• Concept of the Cascade Reactor



U.S. Department of Energy 
Pacific Northwest National LaboratoryDEER Workshop, August 24-28, 2003

What is the optimum 
cation substitution into 
Zeolite-Y?

Kwak, Szanyi, and Peden – Catalysis Today 
(2003) in press.
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Y-Zeolites are Crystalline Silica-Alumina 
Materials with 3-D Pore-Structures

• Cations compensate charged 
sites in zeolite present due to 
Al substitution. 
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Catalyst Synthesis by Ion ExchangeCatalyst Synthesis by Ion Exchange
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Experimental Procedure and Apparatus

Catalyst
Volume

Analysis

Simulated 
Exhaust

Gas composition 
(flow ~ 12,500 hr-1)

• C3H6 – 525 ppm (C:N ~ 6)
• NO – 250 ppm
• Oxygen – 9%
• H2O – 2%
• N2 - balance

Plasma Power
• ~ 10 Joules/liter

Analysis
• Chemiluminescent

NOx AnalyzerReaction rates were measured at 
‘steady-state’ to assure that NOx
‘reduction’ is not due to adsorption.

Discharge
Volume
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Comparison of Alkali- and Alkaline Earth-Exchanged Na-Y
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• Alkaline earth-exchanged catalysts are generally more active than 
alkali metal-Y materials.

• Ba-Y is most active and has high activity over a wide-temperature 
range. 
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Alkali- and Alkaline Earth-Substituted Zeolite Y:
Activity variation vs ionic radius
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Activity is a monotonic function of Ba substitution for Na

Activity of Ba2+

and Na+ sites is 
simply additive  
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Some optimization of 
catalyst synthesis:
The role of calcination and its effect on 
catalytic activity

Kwak, Szanyi, and Peden – Journal of Catalysis 
(2003) in press.
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Ba2+ ion-exchange – no intermediate calcination
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• Aqueous ion 
exchange solutions 
contained an 
excess of Ba+2.

• A single solution 
ion exchange was 
sufficient to 
‘saturate’ the 
zeolite with Ba.
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BaBa2+ 2+ ionion--exchange exchange –– calcinedcalcined in air prior to additional exchangein air prior to additional exchange
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• Again, the aqueous 
ion exchange 
solutions contained 
an excess of Ba+2.

• Each solution ion 
exchange was 
followed by a 
calcination step.

• Solid state cation
exchange?

“Cation Migration in Zeolites:  An in Situ Powder Diffraction and MAS NMR 
Study of the Structure of Zeolite Cs(Na)-Y during Dehydration”, Grey and 
coworkers, J. Phys. Chem. B 102 (1998) 839-856.
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For mechanistic insight, 
compare NO2 conversion 
rather than NO conversion.

NO  —> NO2 (in the plasma)
NO2 —> N2, N2O, HCN, etc. (over the catalyst)
NO2 —> NO (over the catalyst – different site?)

Tonkyn, Kwak, Szanyi, and Peden –
in preparation
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• While virtually all NO2 is reacted over alkaline earth zeolite-Y, a 
considerable fraction does not react over alkali-Y catalysts.

• These differences suggest a significant difference in the reaction 
mechanism over these two classes of catalysts.

Alkali- and Alkaline Earth-Exchanged 
Na-Y – NO2 Conversion
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NOx Conversion Chemistry
• Fate of Nitrogen:

• NO  --> NO2 -->  N2 + N2O + HCN + NO
• Fate of Carbon:

• C3H6 --> CH2O + CH3CHO + CO + CO2
+ CH3OH + C3H6

• After Treatment by Plasma and Catalyst:
• > 50% propene remains
• NOx is mainly NO again
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New Multi-Step, “Cascade” System Design Achieves 
90% NOx Conversion Target with NaY Catalyst!!
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R.G. Tonkyn and S.E. Barlow, SAE 2001-01-3510
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• Patent filed, 9/01.
• Modeling has provided 

insight into optimum 
system design for 
obtaining maximum 
NOx reduction 
concurrent with 
minimum fuel 
economy penalty.
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Summary and Conclusions
• Y-zeolites and alumina are very active for plasma-

facilitated NOx reduction in different temperature ranges.  
NOx conversion levels of greater than 90% are 
achievable.

• The plasma reactor performs NO oxidation to NO2 with 
chemistry that is coupled to partial hydrocarbon 
oxidation.

• Aldehydes, produced in the plasma, are excellent 
reductants for the thermal catalytic reduction of NOx over 
zeolite Y-based catalysts.

• Ba-Y catalysts are the most active with the widest 
temperature “window”.  Improved catalyst synthesis 
procedures have been developed.

• Mechanistic studies point to some clear differences for 
the alkali- and alkaline earth-zeolite Y catalysts, 
especially with respect to the strength of NO2 adsorption.
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NOx emission control is a challenge 
in “lean-burn” engines

• Ammonia (urea) selective catalytic reduction has been used for 
some time for “stationary” sources (e.g., power plants).

• NOx adsorbers based on barium oxides with “lean-rich” cycles.
• Reports of new zeolite oxide-based lean-NOx catalysts first 

appeared in 1990.
• Hybrid plasma-catalytic processes for NOx removal using alumina-

and zeolite-based catalysts have been studied since the mid-1990’s.

• Current “3-way” catalytic 
converters that use 
precious metal (Rh) for 
NOx reduction are 
ineffective for fuel-efficient 
‘lean-burn’ engines.
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New technologies for NOx reduction use oxides
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From the Plasma Catalysis Journal 
and Patent Literature – circa 1997

• Reports in the literature claim many compounds for 
NOx reduction in conjunction with a plasma.  
Meaningful data is shown for only one of these 
compounds (Al2O3).
– Co2O3, Fe2O3, CuO, Al2O3, TiO2, ZrO2, ZnO, Y2O3, MgO, Pt/SiO2, 

SO4/TiO2, SO4/ZrO2, AlPO4, NiSO4/SiO2, ZnCl2/SiO2, H-ZSM-5, H-
Y, H-Mordenite, Na-ZSM-5, Cu-ZSM-5, BaTiO3, SrTiO3; perovskite, 
spinel, ilminite; Co, Cr, Cu, Ni, V, Pt/Al2O3, Pd/Al2O3Rh, Rh/ZnO2, 
Fe2O3, Fe3O4 ; a ceramic, zeolite or perovskite with a coating of 
CuO or BaO, ZSM-5 ; oxides of V, Ti, W ; and Pb or Ba niobate, 
titanate or zirconate. 

• In general claims fall in several categories of 
materials:  high dielectric constant materials, base 
metals, noble metals with known 3-way activity, 
zeolites with lean NOx reduction activity, and 
ammonia SCR catalysts.
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Experimental Reactor

Tube Array 
Reactor (TAR)
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Ion Exchange of Cations in ZeolitesIon Exchange of Cations in Zeolites

Si
O

OO

O
Al-

O

OO
Si

O

OO
Si

O

OO
Al-

O

OO
Si

O

OO

Na+ Na+

Si
O

OO

O
Al-

O

OO
Si

O

OO
Si

O

OO
Al-

O

OO
Si

O

OO

Ba2+

Ba2+ + 2NO3
-

Zeolite Solution

2Na+ + 2NO3
-

+

+



U.S. Department of Energy 
Pacific Northwest National LaboratoryDEER Workshop, August 24-28, 2003

Faujasite Zeolite Structure and 
Ion Exchange Sites

Faujasite Zeolite Structure and 
Ion Exchange Sites

JPC B 103, 8283 (1999)
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NaY batch effect – A Caution!
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Is there ‘synergy’
between Na and Ba?

Kwak, Szanyi, and Peden – Catalysis Today, 
submitted for publication.

Ba exchange levels controlled by limiting Ba+2

concentration in the ion exchange solution
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Effect of varying Ba2+/Na+ ratio 
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based on 
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What is the plasma 
doing?

Panov, Tonkyn, Balmer, Peden, Malkin, and 
Hoard – SAE 2001-01-3513
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R. Dorai and M.J. Kushner, SAE 1999-01-3683.

Gas-Phase Plasma Reaction Mechanisms:  NOX, C3H6

• In the presence of unsaturated hydrocarbons, the primary reaction is oxidation 
of NO by the peroxy radicals leading to aldehyde production.
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Plasma treatment of simulated exhaust

Plasma 
power

NO/ 
NO2, 
ppm

C3H6, 
ppm

CH2O, 
ppm

CH3CHO, 
ppm

CO/ 
CO2, 
ppm

off 210/5 660 0 0 0/0

40 J/l 0/175 425 120 160 90/55

Discharge
Volume AnalysisSimulated 

Exhaust

Other input gases included 2% H2O 
and 8% O2 with a N2 balance.
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Role for Partially Oxidized 
Hydrocarbons

• Penetrante, et al., SAE 982508 – “For some 
catalysts, the partially oxygenated hydrocarbons 
[formed in a plasma reactor] are much more 
effective compared to the original hydrocarbons 
in reducing NOx to N2.”

• Tonkyn, et al., SAE 2000-01-2896 – “NOx
reduction over NaY is more efficient with one or 
more partially oxidized propylene products than 
with propylene itself.”

• NO + Propylene + … -> plasma-catalyst -> ~55% NOx Conversion

• NO2 + Propylene + … -> catalyst only -> ~25% NOx Conversion
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Fate of aldehydes over 
a zeolite catalyst

NOx
conversion 

to N2, %

CH2O 
ppm

CH3CHO 
ppm

Plasma 0 55 75

Plasma 
and NaY

50 55 15

Discharge
Volume

Catalyst
Volume Analysis

• Input Gas (S/V ~ 12,000 hr-1)
• 200 ppm NO
• 500 ppm C3H6
• 7.5:1 C:N ratio
• 2% H2O
• 8% O2
• 400 ppm CO
• 7% CO2
• N2 Balance

• 15 J/L
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Experimental Procedure and Apparatus

Catalyst
Volume Analysis

Simulated 
Exhaust

Gas composition 
(flow ~ 12,000 hr-1)

• HC – varying type and amount
• NO – 200 ppm
• Oxygen – 8%
• H2O – 2%
• N2 - balance

Analysis
• CLA
• FTIR

Catalysts
• Ba-zeolite Y

Reaction rates were measured at ‘steady-state’ to 
assure that NOx ‘reduction’ is not due to adsorption.
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NOx Reduction with Acetaldehyde 
versus Temperature (no plasma!)

C:N ratio ~ 5

Gas composition
• CH3CHO – 500 ppm
• NOx – 200 ppm
• Oxygen – 8%
• H2O – 2%
• N2 – balance

Gas flow
• 12,000 hr-1

Catalyst
• Ba-zeolite Y



U.S. Department of Energy 
Pacific Northwest National LaboratoryDEER Workshop, August 24-28, 2003

Higher aldehydes equally active 
on a C1 basis

C:N ratio ~ 5

Gas composition
• NO2 – 200 ppm
• Oxygen – 8%
• H2O – 2%
• N2 – balance

Gas flow
• 12,000 hr-1

Temperature
• 240 °C

Catalyst
• Ba-zeolite Y
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Plasma-catalysis activity and NO2 TPD of 
alkaline-earth exchanged zeolites

Gas composition
• C3H6 – 520 ppm
• NOx – 250 ppm
• Oxygen – 9%
• H2O – 2%
• N2 – balance

Gas flow
• 12,500 hr-1

Catalysts
• Exchanged   

Na-zeolite Y 
(Zeolyst CBV-
100)

Activity 
correlates with 
higher-T NO2
TPD feature.
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NOx emission control is a challenge 
in “lean-burn” engines

• Oxides are being used as NOx adsorbers in another ‘lean-
burn’ engine NOx control technology.

• Reports of new zeolite oxide-based lean-NOx catalysts 
first appeared in 1990.

• Early on, it became quite evident that the mechanism for NOx
reduction on oxides was considerably different that what had been 
established to occur on metal surfaces.

• Current “3-way” catalytic 
converters that use 
precious metal (Rh) for 
NOx reduction are 
ineffective for fuel-efficient 
‘lean-burn’ engines.
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New technologies for NOx reduction use oxides
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NOx reduction 
mechanism on 

oxide-based 
catalysts does not

involve N-atom 
recombination

• For oxide-based NOx emission 
control, the nature of the active 
adsorbed NOx species is 
important but difficult to 
determine.
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NO2+ CH3CHO on 
Na-Y,FAU at 473K
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a: t=0 (300K) e: t=15min. (473K) f: 5min. evacuation (300K)
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Proposed Reaction Mechanism
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