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ObjectivesObjectives

l Develop methods that integrate advanced air pollution 
sampling and analysis techniques with state of the art 
engine research facilities

l Investigate the effects of changes in engine design and 
operating conditions, lubricants and fuels on physical and 
chemical properties of emissions

l Use these data on the detailed chemical composition of the 
engine emissions to enhance our understanding of subtle 
operational fundamentals of engine systems. 

l Integrate this enhanced understanding into simulations 
through either correlations or fundamental relationships



Experimental SetupExperimental Setup
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Experimental SetupExperimental Setup
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Filter Sampling SystemsFilter Sampling Systems

l PM2.5 Cyclone
l Teflon membrane filters

– Gravimetric, sulfate ions, trace 
metals (ICPMS)

l Quartz fiber filter
– EC/OC

l Quartz fiber filters
– Particle phase organics

l Polyurethane filters (PUF)
– Semi-volatile organic 

compounds
PUF: Polyurethane Foam
QFF: Quartz Fiber Filter
TFF: Teflon Filter
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Animal Exposure StudiesAnimal Exposure Studies
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CARB 8 Modes

Fuels Tested and Operating Fuels Tested and Operating 
ConditionsConditions

l Fuel 1 – Commercial  Diesel 
Fuel
– 352 ppm Sulfur

l Fuel 2 – EPA fuel 2006
– 11 ppm Sulfur

l Fischer Tropsch fuel
– Being tested now

l Primary testing was CARB 8 
mode
– A few additional operating 

conditions were examined



Comparison of Filter Mass Measurements Comparison of Filter Mass Measurements 
and the Analytical EC/OC, Metals  and the Analytical EC/OC, Metals  

MeasurementsMeasurements

l There is good agreement 
between the sum of EC-OC 
and the filter mass 
measurement.

l Mode 8 shows poor 
agreement – probably 
because the light load is 
subject to large uncertainty 
when emissions are reported 
as gm/hp-hrComparison of PM concentration and sum of EC, OC, 

sulfates, and metals of interest for CARB 8 modes.
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EC, OC and Sulfates EC, OC and Sulfates vs vs LoadLoad
Fuel 1Fuel 1
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•Specific elemental carbon, organic carbon, and sulfates versus equivalence 
ratio at the engine speeds of 1200 rpm(left) and 1800 rpm (right).
•Observe the shift is EC, OC and Sulfates with engine load



Metals Loading Metals Loading vs vs LoadLoad
Fuel 1Fuel 1

• Specific metal compounds versus equivalence ratio at the engine speeds of 1200 
rpm (left) and 1800 rpm (right)
• Significant variation in metals loading with changes in load
• Trace metals, ex. Ca, can be correlated with oil consumption
• Iron is probably from engine wear
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Particulate Composition Different Particulate Composition Different 
Operating Conditions with Similar Operating Conditions with Similar 

Particulate LoadingParticulate Loading
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•Comparison of the PM and the sum of EC, OC, sulfates, and metals when two 
different operating conditions exhibit almost the same PM concentrations
•Similar particulate loads may have very different chemical composition



Organic Carbon for Different Organic Carbon for Different 
Operating ConditionsOperating Conditions

l The appears to be a 
correlation between 
the premixed burn 
fraction and the 
organic carbon content

l This correlation 
appears to hold over 
all ranges of speeds 
and loads testedSpecific organic carbon as a function of the 

peak value of the premixed combustion of 
the normalized apparent heat release rate 
(NAHRR).
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•Specific species identification within each class of 
compounds are also available
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ATOFMS BackgroundATOFMS Background
l Aerosol Time-of-Flight Mass Spectrometry 

(ATOFMS)
l Single Particle Mass Spec Instruments have been 

developed over the past decade
– Real time instruments : 100 – 150 particles per minute
– Size individual particles: 0.15 to 5.0 µm 
– Semi-quantitative measure of individual particle 

chemical composition
– Portable

l ATOFMS was developed at UC-Riverside under 
the direction of Prof. Kim Prather

l ATOFMS was commercialized by TSI in 1999



Aerosol Time-of-Flight Mass Spectrometry
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Summary of Data for the Single Summary of Data for the Single 
Cylinder Research EngineCylinder Research Engine

l Data is still being analyzed
l There are large differences in the chemical composition of 

the particulates as the engine operating conditions are 
changed

l Operating conditions with similar particulate loading can 
have very different chemical compositions

l Small nano-particle formation is strongly dependent on 
time history of exhaust gas system before sampling

l There may be correlations between particle size and 
chemical composition
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