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Objectives

Develop methods that integrate advanced air pollution
sampling and analysis techniques with state of the art
engine research facilities

Investigate the effects of changes in engine design and
operating conditions, lubricants and fuels on physical and
chemical properties of emissions

Use these data on the detailed chemical composition of the
engine emissions to enhance our understanding of subtle
operational fundamentals of engine systems.

Integrate this enhanced understanding into simulations
through either correlations or fundamental relationships



Experimental Setup

Engine Bench Setup Engine Specs.
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Experimental Setup

Augmented sampling system .
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® Trace metals
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Filter Sampling Systems

\LDiIuted exhaust

PM2.5 cyclone

PM2.5 Cyclone

Teflon membrane filters

— Gravimetric, sulfate ions, trace
metals (ICPMS)

Quartz fiber filter
— EC/IOC

Quartz fiber filters
— Particle phase organics

Polyurethane filters (PUF)

— Semi-volatile organic
compounds

PUF: Polyurethane Foam
QFF: Quartz Fiber Filter
TFF: Teflon Filter




Animal Exposure Studies
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Fuels Tested and Operating
Conditions

Fuel 1 — Commercia Diesd

Fuel CARB 8 Modes
— 352 ppm Sulfur

Fuel 2 — EPA fuel 2006
— 11 ppm Sulfur

Fischer Tropsch fuel

— Being tested now

Primary testing was CARB 8
mode

— A few additional operating
conditions were examined




Comparison of Filter Mass Measurements
and the Analytical EC/OC, Metals
Measurements
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CARB 8 modes

Comparison of PM concentration and sum of EC, OC,

sulfates, and metals of interest for CARB 8 modes.

There is good agreement
between the sum of EC-OC
and the filter mass
measurement.

Mode 8 shows poor
agreement — probably
because the light load is
subject to large uncertainty
when emissions are reported
as gm/hp-hr



EC, OC and Sulfates vs Load
Fuel 1

Engine Speed:1800 rpm
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*Specific elemental carbon, organic carbon, and sulfates versus equivalence

ratio at the engine speeds of 1200 rpm(left) and 1800 rpm (right).
*Observe the shift is EC, OC and Sulfates with engine load



Metals Loading vs Load
Fuel 1

[ Mode 5 [100%)]
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 Specific metal compounds versus equivalence ratio at the engine speeds of 1200
rpm (left) and 1800 rpm (right)

 Significant variation in metals loading with changes in load

» Trace metals, ex. Ca, can be correlated with oil consumption

* [ron is probably from engine wear




Particulate Composition Different
Operating Conditions with Similar
Particulate Loading

Emoc
e I==r|
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75% load 50% loa 100% load 100% load
@1800 rpm @1800 rpm @1800 rpm @1200 rpm

«Comparison of the PM and the sum of EC, OC, sulfates, and metals when two
different operating conditions exhibit almost the same PM concentrations
«Similar particulate |oads may have very different chemical composition



Organic Carbon for Different
Operating Conditions

Specific OM = 314.3*Peak(normalized premixed combustion)+1.96
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Specific organic carbon as a function of the
peak value of the premixed combustion of
the normalized apparent heat release rate
(NAHRR).

The appearsto be a
correl ation between
the premixed burn
fraction and the
organic carbon content

This correlation
appears to hold over
all ranges of speeds
and | oads tested
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Distribution of Chemical
Compounds in Organic Component
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«Specific species identification within each class of
compounds are also available
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12 modes
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ATOFMS Background

Aerosol Time-of-Flight Mass Spectrometry
(ATOFMYS)

Single Particle Mass Spec | nstruments have been
developed over the past decade

— Real time instruments : 100 — 150 particles per minute

— Sizeindividual particles; 0.15t0 5.0 m

— Semi-quantitative measure of individual particle
chemical composition

— Portable

ATOFMS was developed at UC-Riverside under
the direction of Prof. Kim Prather

ATOFMS was commercialized by TSI in 1999



Aerosol Time-of-Flight Mass Spectrometry
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Developed by K.A. Prather,
University of California
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Summary of Data for the Single
Cylinder Research Engine

Datais still being analyzed

There are large differences in the chemical composition of
the particul ates as the engine operating conditions are
changed

Operating conditions with similar particul ate loading'can
have very different chemical compositions

Small nano-particle formation is strongly dependent on
time history of exhaust gas system before sampling

There may be correlations between particle size and
chemical composition
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