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Overview

Motivation

O Multi-cylinder, turbocharged, common rail, direct injection study in
which high ignition quality fuel was found avoid NOy, PM, THC
and CO emissions while maintaining brake thermal efficiency
during PCCI operations.

Q Lilik, G.K. and A.L. Boehman, Advanced Diesel Combustion of a High
Cetane Number Fuel with Low Hydrocarbon and Carbon Monoxide
Emissions. Energy and Fuels, 2011. 25 (4): p. 1444—1456.

Presentation Focus

O Modified Cooperative Fuels Research (CFR) engine study in
which the critical equivalence ratio (®) of a fuel was found to be
governed by the fraction of highly reactive components (n-
paraffins), which increases LTHR.

d  Critical ® is defined as the minimum @ at which a fuel can autoignite.

Q  Submitted to Energy and Fuels (two publications).



Background

HC & CO emissions in PCCI
* Overly rich mixtures (Ekoto et al. 2009)

Overly lean mixtures
*Lean regions with minimal heat release (Ekoto et al. 2009)

* Lean squish-volume mixture (Colban et al. 2007)

*Overly lean region near the injector (Lachaux et al. 2007)
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Equivalence Ratio

Obtained via planar laser-induced fuel-tracer (toluene) fluorescence at LTC conditions (Musculus et. al, 2007)




Motivation
Multi-Cylinder PCCI Study

A high ignition quality fuel was found to reduce incomplete combustion of an

overly lean charge.
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Comparison of Optimized SOI Timing, in a
DDC/VM Motori 2.5L operating in high
efficiency clean combustion (HECC) mode at
1500 rpm at ~2.7 bar BMEP with ~40% EGR

Factors:
« Combustion phasing
* Ignition dwell
« “Critical” equivalence ratio

Effect of LTFT with respect to diesel at the
optimized injection timing of -4° ATDC:
*BTE increased by ~1.5%
*NOy decreased by ~17%
* PM decreased by ~63%
* THC decreased by ~80%
* CO decreased by ~75%

“Paraffin Enhanced Clean Combustion”

* Publication: Energy and Fuels 2011
 Patent application drafted and submitted
* (#2010-3677)




Work Plan

A high cetane number fuel will have a lower combustion lean limit than a lower
cetane number fuel, thus avoiding incomplete combustion.

Determine if the LTFT (high cetane)

fuel will autoignite at a leaner

equivalence ratio.

1 Homogenous charge to simulate a
localized region in a diesel spray
jet.
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Task 1: Find critical @ of fuels.
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Task 2: Find critical ® of fuels in the
presence of simulated EGR(dilution of O,

with N and CO,). Obtained via planar laser-induced fuel-
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tracer (toluene) fluorescence at LTC
conditions (Musculus et .al, 2007)




Test Plan

Compression Cooling  Air intake

N2 (%) Oz (%) CO2(%) ~ " patic Jacket(°C)  (°C)

Ambient air 79 21 0 456 and 8
Simulated EGR 80.5 12 7.5 8 90 260
GDI
Varied ® QC(()Joo?ant
\\
] Heating I\H/l:;eélr
Experimental fuels Tave —_| /
FBP
DCN °C Combustion
(°C) GC-MS Analysis
Diesel T90 cut 43 329 CO, CO, and O, :
HTFTT90 cut 51 369 \
LTFT T90 cut 77 308 [ Exhaust Compression <
n-hexane 42*/ 50 69 Engine —
|
n-heptane 53 08 e X \I:I;;l
n-dodecane 74 216 Ratiop=4—15 90° C l%?g;sure <atm.  AirFlow
Coolant ' Meter

Modified Cooperative Fuels Research (CFR)

engine (Szybist et al., 2007)

*Note: n-hexane is reported to have a motored cetane number of 42. n-hexane produces a DCN of 50.2 in
the IQT.



Critical Equivalence Ratio Criterion
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Results
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Emission Index CO indicates low temperature fuel reactivity by normalizing variation in

fueling rate between O.

Low temperature fuel reactivity is higher for fuel solely composed of n-paraffins and with
longer average chain lengths.




Results
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Results

06 L|*n-heptane X
ASTM method D6890 (IQT) was used to 05 :Ez;f;g R4 .
determine binary blends with the same o .
DCN as n-heptane: E 04 CR5 X
E 03 L
n-heptane: 53.7 : cr6 & + =
02 r CRS & + X
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CO (g/kgruel)

CO, 2.6bar BMEP, ~15.6% intake O,
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R2 of critical ® correlation with

Critical @

CO and THC (g/kdFyer)

Correlation between critical ® and CO / THC
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Conclusions

THC: R? = 0.685 CO: R? = 0.846
FF2
DCN 34.6

FF4 O
DCN 33.1

FF1
DCN 34.9

FF3
® peN32t ®

10 20 30 40 50

THC and CO (g/kggyer)

ECO m®mTHC

-20 -18.5 17 -15.5 14
SOl timing (°ATDC)

Correlation between critical ® and CO / THC

U A high cetane number fuel has a
lower critical ®, which is a factor
which contributes to reduced
incomplete combustion.

0 EGR significantly influences the
critical ® of fuels with DCN that vary
from 43 to 73.

O The critical ® of a fuel is governed by
the fraction of reactive components
(n-paraffins), which increases LTHR.

O These results suggest that a fuel can
be blended to have a low ignition
quality, which is desired for high
efficiency advanced combustion
operations and with a high n-paraffin
content to reduce CO and THC.
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