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MSU Fuels Investigations 
• Canola-based FAMEs (CME) has relatively good cold 

flow properties & oxidative stability. 

 

 

 

 

 

• DBS further improves the cold flow properties of CME. 

• To stay within the 40 CN U.S requirement, DBS 
content in CME must be limited to 40%. 
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Single-Cylinder Study Objectives 

Study the influence of selected oxygenated fuels 
on combustion and emissions in a modern diesel 
engine 

– Conventional Combustion 
– Low Temperature Combustion (LTC) 
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Fuels Tested 
Mineral Diesel Fuels      

(Control group) Oxygenated Fuels 

720 727 668* CME 60-40 

Cetane No. 45.6 41.8 56.5 50.8 40.8 

NHV (MJ/kg) 42.9 42.4 43.2 37.4 33.2 

H:C ratio 1.81 1.775 1.952 1.88 1.86 

O:C ratio 0 0 0 0.11 0.19 

Aromatics 28.6% 32.4% <5% 0% 0% 

*A low aromatic diesel fuel included in the study (97.7% saturates) 



Test Conditions 

CC1 CC2 

CC3 
CC4 

CC5 

CF1 

CF2 
CF3 

A100 
C100 

25-4 

• A single-cylinder version of the production 6.7L V8 PowerStroke®. 
• Evaluated over the entire engine map.  



Test Procedure 
Testing attempted to mimic diesel engine controls  

• Calibration settings are based on engine speed and fuel quantity 
– Fuel pressure 
– Pilot fuel quantity 

Test Procedure 
• Established base calibration settings using 720 fuel (46 CN) 
• Identical settings for all fuels: 

 
 
 
 
 

• Select conditions also tested with constant injected fuel energy by 
adjusting the quantity of each fuel pulse (adjusted for fuel NHV). 

– Main SOI 
– Pilot SOI 

– EGR rate 
– Boost pressure 

Rail 
pressure 

Main 
quantity 

Pilot 
quantity 

Pilot     
SOI 

Main 
timing 

EGR 
rate 

Conventional 720 calibration setting 720 SOI Sweep 
LTC 720 cal. settings No pilot 720 SOC Sweep 
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NOx and Oxygenated Fuels 

• NOx emissions appear to be primarily a function of intake oxygen 
concentration for both fuels (independent of fuel oxygen content) 

• At the same intake O2, no statistical difference in NOx was observed with 
oxygenated fuels 

• EGR is typically controlled based on a EGR rate or air mass flow 

• Fuel O increases the total intake O2 for a given EGR rate – NOx increases 
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Decreasing 
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Example Control Scenario 
• Commanded fuel quantity will increase 

to adjust for lower fuel energy.  

• As commanded fuel quantity increases, 
typically EGR rate decreases, boost 
and injection pressure increase. 

• Leads to a further increase in NOx 
emissions. 

1 

2 

1 – higher intake O2 

2 – lower EGR rate, higher 
boost pressure, higher 
injection pressure 
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Particulate Emissions 
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• Large PM reductions with both oxygenated fuels 
• Mechanism #1:  PM reduction is due to displacement of aromatic 

− A relatively small PM reduction with low aromatic fuel (668) 
− PM reduction with 668 was not statistically significant 

• Mechanism #2:  PM reduction is the result of fuel oxygen 
− PM reduction is consistent with fuel oxygenation 
− Consistent with estimated oxygen equivalence ratio at the lift-off length 
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Hydrocarbon Emissions 
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Conventional Combustion 
• Higher HC emissions observed 

with the 60-40 blend. 
• Pilot heat release was weak with 

the 60-40 blend due to low energy 
content and low cetane number. 

LTC 
• Results track with cetane 

number rather than 
oxygenation  
− 668 & CME: low HC  
− 727 & 60-40: high HC 

• True also of combustion 
noise (not shown) 
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HC Emissions with Compensation 
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• Equivalent HC emissions with the 60-40 blend vs. the base fuel once 
injected quantity was adjusted for fuel energy content 

• Adjusting quantity reduced HC in LTC for both oxygenated fuels  
− Increased load 
− Shorter ignition dwell 
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Effect of Oxygenation - Summary 

Conventional 
Combustion 

Low temperature 
Combustion 

NOx Same as diesel fuel1 

PM Decreased significantly w/ fuel oxygen 
HC Same as diesel2 Function of cetane3 

Noise Same as diesel2 Function of cetane 

Thermal Efficiency Same as diesel2 

Fuel Consumption Degraded due to lower NHV4 

1 Maintaining calibration settings, including intake O2. 
2 Adjusting injected fuel quantity for fuel energy content. 
3 Lower HC when injected fuel quantity adjusted for fuel energy content. 
4 A function of fuel energy density. 

Conventional 
Combustion 

Low Temperature 
Combustion 

NOx Oxygenation had no effect1 

PM Decreased significantly w/ fuel oxygen 
HC Same as diesel2 Function of cetane3 

Noise Same as diesel2 Function of cetane 

Thermal Efficiency Oxygenation had no effect2 



Thank you! 



Engine Description 

Type Single-cylinder 
Cycle 4-stroke 
Valves per cylinder 4 
Bore 99 mm 
Stroke 108 mm 
Displacement 0.83 L 
Compression Ratio 16.2:1 
Maximum Rail Pressure 2000 bar 
Combustion system design Chamfered 
* Engine & combustion system specifications matched the 
production 6.7L PowerStroke® 



Combustion Noise 

• Differences in combustion noise 
correlate with cetane number of 
the test fuel in both conventional 
combustion and LTC. 

• Compensation for NHV reduces 
slightly difference from 720 fuel. 

High Cetane Low Cetane 
668 CME 727 60-40 

CDC Lower Similar 
LTC Similar Lower 
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BSFC & Thermal Efficiency 
• Higher BSFC with 

oxygenated fuels  
− Lower NHV 
− Lower BMEP 

• Thermal efficiency of 
CME was comparable to 
the diesel fuels 
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• Lower thermal efficiency with the 60-
40 blend without fuel quantity 
adjustment – later combustion 
phasing 

• Similar thermal efficiency for all fuels 
when injection quantity was 
adjusted for energy content 
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Additional Conclusions 
It is speculated that NOx increase found in the literature may be due to 

– An increase in intake O2 with fuel oxygen content when EGR 
rate or air mass flow are controlled 

– Reduced EGR, increased boost and increased injection 
pressure when the commanded fueling injection is increased to 
meet torque demand with oxygenated fuels (lower energy 
content) 

– When the intake O2 and engine calibration are the controlled to 
the same value, oxygenated fuels do not appear to have a 
negative impact on NOx emissions in a modern diesel engine 
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