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General Motivation Driving
Technology Development

Maximize efficiency within the
constraints of emissions.
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Efficiency Quest Overview

* Losses, efficiency decrements, can be identified
« Compression and expansion are wonderful processes
thermodynamically
— Their use, especially expansion, should be maximized
« Combustion irreversibilities of approximately 20% of the fuel’s
availability are unavoidable
— This is not a combustion efficiency issue
* Keeping in-cylinder temperatures low is thermodynamically very
advantageous

— Directly impacts extractable expansion work for a specified expansion
ratio, which works toward minimizing exhaust energy loss

« Heat transfer is a difficult loss to contend with — low in-cylinder
temperatures help in two ways
— Minimized the magnitude of the heat transfer
— Minimized the availability of the heat transfer energy lost
« Gas exchange work is a necessary expenditure because the
engine is a chemical processes.

— Increases in pumping requirements for any reason carries a fuel economy
penalty

* No stone can be left unturned
— Crevice volumes, friction, rotating inertia, transients, etc.
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Where To From Here?

H State of the art engines are becoming
very good and approaching stretch
goals.

H Challenge:

Continue to “eek” out further efficiency gains

Expand these high efficiency operating regimes to
larger portions of the engine operating map, and for
all operational scenarios — transients

B Introduce two activities

Gasoline Direct Injection Compression Ignition
Transient response
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Gasoline Direct Injection
Compression Ignition*

» GDICI is a low temperature combustion
(LTC) strategy that offers the potential
to increase efficiency and reduce both
NOx and PM emissions

» This combustion strategy is highly
dependent upon direct injection of
gasoline near TDC (within 40° BTDC)

» The timing and duration of this
near-TDC injection can be tailored
(based on speed and load) to create
an optimized equivalent ratio
distribution leading to a stable,

staged combustion event (low
noise) * GM-ERC-CRL and

DOE Contract DE-EE0000202

» Unlike diesel LTC, GDICI requires no
EGR up to 7 bar net IMEP, and PM
emissions remain <0.1 g/kg-Fl at loads




LTC: Gasoline Compression Ignition

B CFD served an important
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Emissions are Low and Combustion
is Controllable
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B Diesel efficiencies, with very low emissions

B Injection timing, pressure and split ratios give control
robustness

University of Wisconsin -- Engine Research Center



Multi-cylinder Transient*
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« Explore transient performance for LTC and combustion mode changes

« Identify and quantify the parametric differences between transient
combustion and emission, and the values obtained from tests
attempting is simulate transient performance via sequential steady

state operating conditions I



Reproducing Transients with Steady
State Operation (LTC operation)

B O2 concentration atIVCis a
critical parameter

B Itis not properly assessed via
MAF and ECU outputs

Combustion Metrics
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Reproducing Transients — Emissions
(LTC)

B Emission trends for LTC transients are captured well when
dilution at IVC (02 concentration) is captured

B For complete reproduction of the transient results the effect of
long term thermal transients must also be captured.
This is more important when the transient involves classis diesel

combustion
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Thank you for your attention
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Questions

 What technologies will be used to further increase engine
efficiency? Focus of this presentation

 How will government regulations on fuel economy and
emissions influence future engine technologies? In part,
they will drive it

* Is there a potential role of diesel engines for light-duty
vehicles? Yes

 What role will suppliers play in helping to achieve low-
emission, high-efficiency engines of the future? A Big One

« Is there a role for fuels other than gasoline and diesel in the
transportation sector? If so, which fuels and which
markets? If not, why not? No short answer

« Will consumers accept alternative fuels for light-duty
vehicles? If they are convenient, available and
affordable

Do you foresee a large role for hybrid and electric vehicles?
Yes

 How can modeling and simulation improve engine
efficiency? This presentation
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Tracking Energy and Exergy Flows

B No stone left unturned

Some losses we must accept, e.g. combustion irreversibilities

Systematically work to maximize expansion work, and reduce other irreversibilities
e Stretch goals have been identified — giving road maps on pathways to maximizing efficiency

Understand, and take advantage of, coupling of energy/exergy flows and emission
abatement technologies
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