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Improve Engine Fuel Efficiency 2

Brake efficiency=F(gross efficiency, gas exchange, friction)

What can we do about efficiency?
Optimal combustion timing & duration ) [ Approach ideal
volumetric at/near TDC
Improve combustion efficiency |
reduce losses (HC and CO) I Combust all fuel I

Improve thermal management

cycle |

reduce thermal losses m—) | Keep energy in |
Improve gas exchange
prove s ~1ang s | Lower negative work |
reduce pumping pressure
Improve friction ) [ Throw less away |

reduce bearing loads
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RCCI Fueling Strategy 3

* Retrofitted conventional (SI Kokjohn et al. SAE 2009-01-2647

type) PFI system bl
— Delivers low reactivity fuel Hanson et al. SAE 2010-01-0864

(gasoline, E85, hydrous ethanol)

e Conventional DI common DI common rail
rail operated at low pressure High reactivity
o Early Direct injection(s) of

reactive fuel (diesel, bio diesel),
at ~500 bar

e Result:

o Stratified in both reactivity
and equivalence ratio

| PFI
Low reactivity

e Significant combustion

control gained throu?h ] Reactivity and ®
injection timing and fueling stratification
ratios

e Global and local reactivity
blend can be altered
through injection timings
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RCCI Load Sweep

—— 1 iese revimn NEB

e DEER 2010 RCCI data

- Conventional diesel 1300 [rev/min] 16.1:1
—a— RCCI E85/diesel 1300 [rev/imin] 14.88:1

e SAE 2011-01-0363 _A_ " [EPAZ010 Hlf_-) Limit

e Overall turbo eff. 50% without
EGR, 40% with (RCCI 9bar+)

e Conventional diesel

0.1§

e Single injection (high n)

e High NOx and PM (SCR?)
o Gross efficiency ~47-48%

e E85/diesel RCCI reduced Cr

RehoRRE® 00 =2 S .3

e Crreduced to 14.88 from 16.1
e Intake temp raised (32° to 55°C) _,
e Bathtub piston (~no squish) 30
e Increased engine speed %8
. = 048 [ - S
e Reduced heat transfer time 0de | S — ;
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Clean, efficient, wide 4 6 BIMEPg)(bar;Z 14 %
load RCCI possible




Optimizing Piston Shape for Premixed Fuel -

Simulation (LD)

e Different from CDC OExperiments (HD)
e Fix Cr and bowl ¢ oL DY, 1
e change bowl and squish depths z 'g OSirf,'Mation Heat loss (LD) f 16
« High eff. haslow losses % §™ i ™
 Reduce heat transfer EE om0 e 08
 Decrease surface to vol. ratio =] = 8,000 Sql;,'s',';- 8 g
Flatter piston reduces BT oo comb. o ;5.%5 |z
surface area for HX §§‘ 2000 | | o,
e Reduce HC and CO - ’ 0 02 04 06 08 1 ’

Fraction of TDC volume in Bowl

e Lose less charge to crevices T
Small squish height \ O

e Better oxidize trapped and

outgassing crevice charge 18",/3 18° ,/:%
Best with large squish height | & ~ ,ﬁﬁjf\ \

Temperature [K]

w49

-

7

o

7 5135
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Tested Piston Shapes

e Examine 3 piston shapes < 3r Scaled
e Stock

e Piston optimized for diesel, Cr 16.1:1

e Scaled to UW LD

Adr Stock

Cr reduced to 15.5:1
Longer squish (.4r vs. .3r)
Cut from blank 1mm @ undercut

e New piston design

Bathtub shape (~no squish)

Piston surface area reduced by 4.15%

Top crevice
2. 48X stock

N

1.5mm

Modified
Stock

Cr reduced to 14.88:1
Top ring crevice 1.5mm shorter

2 Cut from blank 1mm ¢ undercut
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o

Top crevice 2.27X stock

volume
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Tested Piston Designs

volume, and squish heights

RCCI Operated with 5 pistons
e Designs varied in Cr, bowl diameter, crevice

e All but stock 16.1 cut from blanks

Blanks @ undercut -.5 to -1
Measured engine out HC

Calculated
e crevice V / V1pc
e squish V / Vpc
e crevice + squish V / Vipc

Engine out HC dependencies
e crevice volume
e smaller=Dbetter
e squish geometry
e squish optimization
ereduce HC
eeven with large crevice

v

Crev

\

ice V _Sql.IISh

W

mm
Error bars , only BL vol. Dec et al. SAE 2009-01-0650
2500 -
0 Stock Scaled Modified
_Z 2000 IR \N \
S / N T x _
< 1500 +— ~l el
3 Not
£ 1000 Undercut
>
E 500 | b1 B0 BE B
o
0 _
16.1 11.6 16.1 15.5 14.88
Piston Cr
M PPM HC (Crevice Vol./ TDC Vol.) x 1e5

| (Squish Vol. / TDC Vol.) x 1e4 H ((Squish + Crevice)Vol. / TDC Vol.) x 1e4
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H

C Conversion Efficiency vs. Geomet

e HC crevice dependent [« | | |
|
« Modeled crevice flow -05r
Reitz et al. SAE 892085
e F(Cr, ®, speed, size)
Fuel in comp. modlfled ~stock scaled
Fuel out exp. l
( 0.7
e Eo.ss A Q\
Outgas mixing, g
_ | Amb. gas temp. 3 0.6 ~. !
Important! q";’ 0.55 A N y =-1.9406x + 0.7188
2 A & 4 R® = 0.9347
e predict trapped fuel 5 o5 Ak * ~
c N
e Defined HC M onversion 8045 \ >
T HC conversion independent S
M Drediced — M measured 0.4 A | of crevice Vol./TDC Vol. 2
Tlconversion T 0.025 0.075 0.1 0.125 0.15
Mprediced | |
A Crevice € Squish Vol. / TDC Vol.
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Thermal Losses 9

e Stock type piston
instrumented with 15
thermocouples

e 11 on piston face, 1 top ring land
e 2 in oil gallery (infout), 1 backside

e By symmetry 15 thermocouple
“60°sector”

e Mirror sector 360°(6 plumes)
e 90 measurement locations

e Error: does not capture gradient
in oil galley (thus surface)
temperatures across piston
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Thermal Differences 10

* Diesel operation 160__ — Conventional diesel || T C] 800
e Single injection 1500 bar e R A s o
e No egr, ~50% turbo eff., ®=.38 = z
e RCCI operation ° Y
e Same conditions as diesel, ®=.34 § é”
e Comb. n ~95%, GTE 54% vs. 50% £ = I
e Piston @ undercut 0.5mm f ]
e Defined °Cooling — ------ R R
_ : 20 -0 0 10 20
e = (temp. dl_esel) — (temp. RCCI) Crank Angle (- CA ATDC)
e Measured oil galley surface temp. , °Cof Coolingvs.
200 . S+S- Piston surface temp. Conventional Diesel
Up to 60°C W Diesel ME85/Diesel RCCI|
cooler piston T | g ™
< 160
~37% lower 2 140 |10 136 135
piston oil g 120
surface AT S o

80 -
Galley Inlet Backside Galley Outlet
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How do Brake Efficiencies Compare? 1

Apply Chen-Flynn model FMEP =C, +(C,*P_ )+(C, *S, )+ (C* S )
CDC, stock piston P,.. = Peak Cylinder Pressure S =Mean Piston Speed

Assume stock crevice ga
ASSLII HC 9 p Used same constants (C1-C4) as GT Power
PPy CO“VG_I‘SIO“ n —k— Conventional Diesel 16.1:1
e RCCI, stock piston —=— RCCI E-85/diesel 16.1:1, HC conv. applied
e RCCI with modified piston = '_",RCC' =85idiesel 14,851, 1 conv. applied
~ B 062 8 -Dieset 0% EGR -
o ~NTE, +.8 _BTE (lower I_Dmax) 2 os] A1|0/0 EGR <—:—>RCC| 40% EGR_
e More pumping losses with 16.1:1 £ 056 ‘ _
£ 053+
same P more AV < =—16.1:1 (stock) § g;i‘,’;
20% less - work ——14.88:1 (modified) é,o_m i 1054 __

. Jos15
To increase brake values must 178

e Increase net without + Pmax
e Limit/optimize EGR delivery/rate

RCCI ~5-15% +n vs. CDC

RCCI meets EPA 2010 HD NOx and
PM mandates in-cylinder!
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Conclusions 12

e By mixing of fuels of varied reactivity in-cylinder (RCCIt), high efficiency
and low emissions were realized across a wide range of loads.
o Computational simulations suggested that piston shape was important
o Improved squish geometry has potential to reduce sources of HC
o Improved bowl shape has potential to reduce heat transfer losses

 HD engine experiments with three piston shapes confirmed simulation
o Optimal shape for RCCI like strategies has wide bow! with reduced squish
e Reduced compression ratio found to offer wide intake temperature range

o Best tested bowl shape found to improve crevice outgas oxidation rate
e Major HC source from non-participating fuel located in crevice (n loss)
e Small squish improved oxidation of crevice fuel outgassing (n increase)
o With identical crevice, low Cr predicted to match high Cr performance

e Thermal losses with RCCI found to be reduced vs. CDC
e Increased potential for increased expansion work (keep more energy in)
e Reduced thermal => further ring pack optimization (reduce HC further)

o Correlated brake efficiency high for both tested piston shapes
e |ow Cr matched brake n, or slight improvement, more optimization possible
e Compared to CDC RCCI offered ~5-15% + in BTE + NOx PM met in-cylinder
« RCCI operates HP system at low pressure potential for further n+ > Q
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13

Thank You for your attention

dasplitter@wisc.edu
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Estimated Improvements 14

i | iese N

e Crevice effects on n —a— RCCI E85/diesel 14.88:1, crevice 2.3 X stock
- &~ RCCI E85/diesel 14.88:1, crevice 0.8 X stock

e Stock piston T2
e Optimized for diesel CDC N :12%
e Small crevice, long squish, il _2 ]
tight squish clearance 1o
- - _—510_' """"""""""" )
 Modified 2.3x crevice B
e ~2pt loss in efficiency < 12bar 2 4
e HC ~ same as stock i
e Use stock clearances :
Crevice [
reduced to +.5mm<-‘ :
0.8X stock! gg-gg _
« Assume same HC conv. eff. _'§0.54:
2 0.52
~60% reduction in HC | gos[ “. o Do L NERE
Converting HC at ~50% =% "8 10 12 14 16
~]1 pt. increase in GTE IMEPg (bar)
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Charge Preparation is Critical 15

Double Injection

60% of DI fuel in first pulse
Constant 24°CA between pulses
Constant load of 8 bar IMEPg

Constant CA50 of -5°CA ATDC +-
1°CA

Phased through intake
temperature (boost adjusted)

-Small window for low emissions

and maximum efficiency

« Low HC and CO required for high
efficiency

« Low NOx and PM required for

emissions mandates (met in-cylinder)

CO (g/kw-hr)
H [$,] N ~ o]

—e— RCCI E-85/diesel 1300 [rev/min] 16.1:1

a o N o ©

1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 0.1
f f 1 . | number denotes % diesel fuel | -

HC (g/kw-hr)

NOX (g/kw-hr)



Double Injection Sweep AHRR, Cyl. Press

« Double Injection Same Peak HTHR Location ~8 bar IMEPg

« 60% of DI fuel in
first pulse

« Constant 24°CA
between pulses

« Constant load of 8
bar IMEPg

Pressure (bar)

’ ’----61°;and -37° CAATI'DC"'

« Constant CA50 of - ______ ________ ________ _:__66 aanoCAAmc )

5°CA ATDC +-1°CA

- Phased through ................. 200
Intake temperature = UON T,
(boost adjusted) 35 30 95 A0 5 6 & 10 15 20 25

Crank Angle (° CA ATDC)
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Redesigned piston injection effects 17

Bathtub piston bowl shape effects

emissions trends

— Engine operated at 1700

[rev/min], 6 bar net nominal

load, E85-diesel fueling

— Reactive fuel near liner reduces
HC, CO, NOx, increases Soot

— Reactive fuel near center

increases NOX, CO, and HC,

reduces Soot

—a RCCI E-85/diesel 1700 [revimin] 14.88:1

T T T T T T T T 20

HC (g/kW-h)
H gl O N

——| —— DI Injector current (A) 10
2 =
16 8 I
14 l g E
_ 5 D
12_ 4 0
13 O
z 10 15
€ 8 i
<
3 6 - Decrease
4l Increase —1
2
o] : k : : : : -~ k . 0.60 0.65 0.70 0.75 0.80 0.85 0.90
% ‘5 05 0 W DI SOI1 duration (ms)
Crank Angle (°CA ATDC) ?’%ESEARCﬁ/
+Soot +NOx +HC+CO

Lg%
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RCCI E85/Diesel High Load

e SCOTE ~ CATC15in
geometry and

displacement (per cylinder)

e C15 435 hp rating (450
hp developed)

e RCCI operated in SCOTE
at two speeds

e 1700 RPM ~ rated power
e 1300 RPM ~ rated torque

o UW experiments limited
in load by dyno capacity
e (100 hp at 2000 RPM)

]
o
S c
o35
a

Tested RCCI to UW
laboratory capacity

CAT C15
435 hp (324 kW)

18

| = CAT C15 (prod.)
| ==+=:UW SCOTE

uw

Dyno

Torque Limit

\

~17 bar IMEPg

¥ 1 ~16 bar MEPg

900

1100 1300 1500 1700 1900

Engine Speed rpm

UNIVERSITY OF WISCONSIN - ENGINE RESEARCH CENTER

-~
2
<
Z
)

2100




UW SCOTE Engine Laboratory 19
3401E SCOTE Geometry chosdFon Tuo 45K
Displacement (I) 2.44 Comrassed > | e

Bore (mm) 137.20

Stroke (mm) 165.10 E@L’Lﬁ

Connecting Rod Length (mm) | 261.60 o

Squish Height (mm) 1.57 DPF AN

IVC (deg BTDC) 143.00

IVO (deg ATDC) 335.00 e F—
Swirl Ratio (stock) 0.7 v . )

Piston shape

Open crater
(Stock) Bathtub
(Modified)

Geometric Compression
Ratio

16.1:1 Stock
Modified to
14.88:1

INT CO2
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Load Sweep conditions 20

eOverall Turbo charger efficiency
calculated

e Used to determine boost

— _[7/amb_1]
WJ Y amb

sk ]-;xhaust % (1 + 1 j s 77 * 1 . ])exhasutpl.pe ( Y exhaust
overall
* T ambient AF R P

exhaust manifold

P

intake __ 1— cp exhaust

ambient Cp ambient

eIntake temperature
e Between 32°C and 70°C
*EGR Temperature
e 60-120°C Exhaust

ePeak pressure rise rate of 10 bar/° Therm‘:_m"p'e

Pressure

ePeak pressure limit of 150 bar
ePeak motor pressure @ -0.4 °ATDC
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Redesignhed Piston 21

Why Change piston shape?

e Improve piston shape for
premixed fuel, and reduce heat
transfer

eReduced piston surface area

70.0
4.15% < 675
Why Change Cr? P 65.0.
e Enable increased intakeand EGR § |
temperatures £ 6251
eIntake temperature increased o 8007
~40°C to ~70°C, EGR increased to 3 57.5
120°C g 55.0-
Penalty of Reduced Compression = 505
Ratio g 50,0
 Theoretical thermal efficiency R
reduced = 415

- 1.0 125 140 I155' 170 185
eDesign Result (new) 14.88  16.1 (stock)

o #2.17% reduction in theoretical Compression Ratio (-)
b thermal efficienc
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Efficiency + Friction

FMEP = C, +(C, *P

Chen-Flynn Model for
determination of FMEP
)+(C, *S, )+(C, *s )

max

P_ = Peak Cylinder Pressure

max

g = Mean Piston Speed

e Used same constants as
GT Power

e Error bars in figure denote
range of constants (C1-
C4)

For a given compression
ratio and engine speed

e RCCI operation yielded ~
14% better ~brake eff. vs.
CDC
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—a— Conventional diesel 1300 [rev/min] 14.88:1
—4— RCCI E-85/diesel 1300 [rev/min] 14.88:1 (turbo B)
—4— RCCI E-85/diesel 1300 [rev/imin] 14.88:1 (turbo A)

-t =

PPPPPP????
JoIBRBKSK

2 6 8 10

ENGINE RESEARCH CENTER

CA 50 (°CA ATDC

o

Normalized nbrake (C-F) ()
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