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Lean NOx traps remove NOx from lean-burn 
engine exhausts in cyclic lean/rich operation 

Rich environment (short interval)  
NOx release & reduction 

Lean environment (long interval) 
NOx storage 

LNT = 3-way catalyst + NOx storage material 
Pt, Pd, Rh, Al2O3, CeO2 Ba, K 
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Commercialized variants of  LNTs 

DOC 

LNT 

DPF SCR 

LNT TWC Muffler 

Lean gasoline (TWC + LNT) 

Diesel (LNT+SCR) 

Diesel (LNT) 
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LNT catalysts represent non-urea 
aftertreatment option for lean engines: 
no need for urea storage & delivery systems 

Technical barriers 
• Fuel penalty 

– Regeneration & desulfation 
• Cost 

– High cost of platinum group metals 
• Durability 

– Large built-in catalyst margin 
• Byproduct emissions 

– NH3: useful in LNT+SCR application 
– N2O: greenhouse gas to be controlled 

 
Fundamental insights can enable more efficient and 

cost effective technology development 
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Understanding spatiotemporal distribution of  
reactions can lead to new insights 

• Traditional, zero-dimensional (i.e., non-integral) consideration 
of reactions is not sufficient to describe relevant processes 
― Intermediate reductant roles of NH3 
― Sulfation impact on catalyst performance 
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Storage (lean) 
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1-10 s 

• LNT is an inherently transient & integral reactor 
― Transient chemistry evolves along the catalyst length 
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Objective: understand how spatiotemporal 
distribution of  NOx storage coupled with 
local chemistry affects NH3 & N2O selectivity 

1. Major storage during lean phase 
2. Readsorption during rich phase 
3. Sulfation-induced storage displacement 
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Approach: controlled lab reactor study with 
spatiotemporally resolved analysis 
•Commercial LNT:  
– Pt/PdRh, Ba-based, oxygen storage capacity (OSC: Ce/Zr) 

•Two types of experiments (base gas: 5% H2O, 5% CO2, N2 balance) 

1. Lean/rich cycling (with or without sulfation) 
― Lean (60 s): 300 ppm NO, 10% O2 

― Rich (5 s): 3.4% H2 

2. Transient response 
―Initial LNT surface: oxidized or nitrated 
―NH3 pulse input 

•Spatiotemporal resolution of reactions 

Bench reactor 
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• Fraction of LNT sufficient for complete NOx storage under optimal conditions 
– Complete lean-phase trapping of inflow NOx in 1st half (“active NSR zone”) 

• Upstream-slipped rich-phase NOx can be readsorbed & further reduced in 2nd half 

– Almost complete cycle averaged NOx conversion 

 
 

Upstream-slipped NOx during regeneration 
can be re-adsorbed and reduced downstream  

Lean/rich cycling at 400 C 
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• Plug-like axial displacement of lean NOx storage 
– Complete lean-phase trapping of inflow NOx still maintained 

• Earlier & greater rich-phase NOx slip  
– Due to less downstream storage buffer 
– Significant rich-phase NOx slip leading to a reduced cycle-averaged conversion 

 

Sulfation axially displaces lean NOx storage 
increasing rich NOx slip 

Time (s) 

NO
 (p

pm
) 

Time (s) 
NO

 (p
pm

) 

¼  

Outlet 

Inlet 

¼  

½
   

¾   
Outlet 

½
   ¾   

Lean/rich cycling at 400 C (after sulfation; 1.7 g/L) 
Spatiotemporal profiles  



10 Managed by UT-Battelle 
 for the U.S. Department of Energy 

Sulfated NOx storage

Sulfated NOx storage NOx slip

NOx slip
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Sulfation-induced axial redistribution 
explains decreasing NOx conversion pattern 

• < ~1 g S, conversion increasingly limited 
by rich NOx slip 
– Continuous decrease in readsorption 

• > 1 g S, accelerated decrease due to 
insufficient storage capacity 

 

Lean/rich cycling at 400 C 

Integrated outlet measurement 
NOx storage

NOx storage
NOx

readsorption

Lean (late)

Rich (early)

NOx slip

regeneration front

Lean (late)

Sulfated NOx storage

Sulfated NOx storage
NOx

readsorptionNOx slip NOx slip

regeneration front

Rich (early)



11 Managed by UT-Battelle 
 for the U.S. Department of Energy 

NOx storage

NOx storage
NOx

readsorption

Lean (late)

Rich (early)

NOx slip

regeneration front

NH3 slip NH3 oxidation

Lean (late)

Sulfated NOx storage

Sulfated NOx storage NOx slip

NOx slip

regeneration front

Rich (early)

NH3 slip

0

0.5

1

1.5

2

2.5

0
5

10
15
20
25
30
35
40
45
50

0 1 2 3
Sulfur loading (g/L) 

Se
lec

tiv
ity

 %
 

Se
lec

tiv
ity

 %
 N2O 

Sulfation-induced axial redistribution 
explains increasing NH3 selectivity 

• Significant increase in NH3 selectivity (9-fold increase) 
― Shortening of OSC-only zone: less NH3 reaction with OSC 

• Minor change in N2O selectivity (initial increase followed by continuous decrease) 

 

NH3 

Lean/rich cycling at 400 C 

Integrated outlet measurement 
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Direct intra-catalyst measurements confirm 
the link between NOx distribution & NH3  
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NH3 reduction of surface oxygen does not 
lead to N2O formation 

• NH3 reduction of stored oxygen (CeO2): efficient (plug-like front) 
• Not a major contributor to N2O formation 
• Consistent with insignificant change in N2O selectivity with sulfation 

― Despite 9-fold increase in NH3 slip (i.e., less NH3 reduction of OSC) 

 
 

Transient response experiment : NH3 pulse input 
LNT pre-oxidized with O2 followed by inert purge 
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NH3 reaction with stored NOx leads to N2O 

Transient response experiment: NH3 pulse input 
LNT pre-nitrated with 300 ppm NOx + 10% O2 followed by inert purge 

• NH3 reduction of stored NOx: efficient  
• Major contributor to N2O formation 
• Consistent with insignificant change in N2O selectivity with sulfation 

― Plug-like axial displacement of the active NSR zone (i.e., just location changes) 
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NH3 reaction with stored NOx relevant to 
LNT N2O selectivity 

• NH3 reaches unregenerated zone earlier than H2 
         Partridge and Choi, Appl. Catal. B: Environ. 91 (2009) 144-151 

• Due to lower regeneration efficiency of NH3  
• Co-presence of CO and HCs can further alter 

N2O selectivity 

Pihl et al., SAE Technical Paper 2006-01-3441 
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Conclusions 
• Distribution of stored NOx evolves continuously  over space and time 

– Primary storage with inflow NOx (lean) 
– Downstream readsorption of upstream-slipped NOx (rich) 
– Sulfation-induced axial displacement of active NOx storage (lean, rich) 

 

• NH3 byproduct plays intermediate reductant roles 
– NH3 reduces efficiently stored oxygen (OSC) without N2O formation 
– NH3 reduces efficiently stored NOx with N2O formation 
 

• Coupling of NOx storage distribution with local chemistry is an 
important factor determining LNT performance trends 
– Example: sulfation impact 

 Increased NOx slips (both lean and rich) 
 Increased NH3 selectivity 
 Minor change in N2O selectivity 

• Insights can facilitate modeling and development efforts 
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