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What are low-temperature combustion systems?What are low-temperature combustion systems? 

• Low Temperature combustion systems go by a variety 
of names (MK, PCI, PPCI, HECC, HCLI, Unibus, etc.) 

• All of them strive to enhance premixing of fuel and air, 
and to keep peak combustion temperatures low – 
thereby avoiding NOx and soot formation 

Advantages: 

- Conventional diesel FIE & 
bowl geometry 

- Combustion timing is 
controlled by fuel injection 

Disadvantages: 

- High UHC & CO emissions 
(efficiency penalty) 

- Limited speed / load range 
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Constant φ & T,  P = 60 bar, 
∆t=2 ms,  21% O2 

Soot/NOx contours from 
Kitamura, et al., JER 3, 2002 
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• For temperatures above ~1200 K, UHC 
oxidation in lean mixtures is complete 
(independent of EGR rate) 

Constant φ & T,  P = 60 bar, 
∆t=2 ms,  21% O2 

Soot/NOx contours from 
Kitamura, et al., JER 3, 2002 
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Poor mixture formation: • Low injection pressure 
• Poor atomization 

• Under or over-penetration 

• Sac volume / hole dribble 

Constant φ & T,  P = 60 bar, 
∆t=2 ms,  21% O2 

Soot/NOx contours from 
Kitamura, et al., JER 3, 2002 
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Poor mixture formation: • Low injection pressure 
• Poor atomization 

• Under or over-penetration 

• Sac volume / hole dribble 

• Over-lean mixtures 
- Small nozzle holes 

- Excessive injection pressure 

- Excessive ignition delay 

Constant φ & T,  P = 60 bar, 
∆t=2 ms,  21% O2 

Soot/NOx contours from 
Kitamura, et al., JER 3, 2002 
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Poor mixture formation: • Low injection pressure 
• Poor atomization 

• Under or over-penetration 

• Sac volume / hole dribble 

Cold quench layers 
• Crevices 

• Wall films 

• Over-lean mixtures 
- Small nozzle holes 

- Excessive injection pressure 

- Excessive ignition delay 

Constant φ & T,  P = 60 bar, 
∆t=2 ms,  21% O2 

Soot/NOx contours from 
Kitamura, et al., JER 3, 2002 



 
 

Bulk gas CO sources are similar to the bulk gas
sources of UHC
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Over-rich regions caused by poor mixture formation 

(typical of high load – CO emissions track soot emissions 
Constant φ & T,  P = 60 bar, 
∆t=2 ms,  21% O2 

Soot/NOx contours from 
Kitamura, et al., JER 3, 2002 
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Bulk gas CO sources are similar to the bulk gas
sources of UHC
Bulk gas CO sources are similar to the bulk gas 
sources of UHC 

Over-rich regions caused by poor mixture formation 

(typical of high load – CO emissions track soot emissions 

• Over-lean mixtures 

(typical of light load – CO emissions 
correlate with τign 

• For temperatures above ~1450 K, CO 
oxidation in lean mixtures is complete 
(independent of EGR rate) 

Constant φ & T,  P = 60 bar, 
∆t=2 ms,  21% O2 

Soot/NOx contours from 
Kitamura, et al., JER 3, 2002 
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860 bar rail pressure 
7-Holes, 0.14 mm 
Included angle = 149° 
Mini Sac (Vol. = 0.23 mm3)

} 

Based on production GM 1.9L head
 
Bore = 82.0 mm, Stroke = 90.4 mm
 

The optical piston 
retains the same bowl 
geometry and valve­
pockets as a production 
intent piston; only the 
crevice land height is 
larger 

The Bosch CRI2.2 
nozzle hole layout 
has also been 
modified to facili­
tate optical studies 
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Both pressure history and emissions behavior 

are well-matched to metal test engines 
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RRecap frecap from DEER 2008:om DEER 2008:
 

In early-injection (PCI-like) combustionX 
systems, UHC is observed: 

- Near the injector 
- In the squish volume 
- In mixture leaving the bowl 

50 cycle average image Predicted UHC 

Simulations suggest that rich mixture leaving the bowl dominates, but this is only 
infrequently observed in the experiments 

CO is mainly found within the squish volume 
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In early-injection (PCI-like) combustionX 
systems, UHC is observed: 

- Near the injector 
- In the squish volume 
- In mixture leaving the bowl 

Simulations suggest that rich mixture leaving the bowl dominates, but this is only 
infrequently observed in the experiments 

CO is mainly found within the squish volume 

? 

50 cycle average image Predicted UHC 

In our recent work, we have applied a variety of measurement techniques to: 

- Identify the cause of the discrepancy between experiments and model 

- Approximately quantify the magnitude of the UHC from various sources 

- Improve the accuracy of in-cylinder CO measurements (eliminate interference) 

- Examine the impact of load, O2, SOI, and fuel type 



 

CComplemenomplementartary optical diagy optical diagnostic tnostic techniquesechniques
 
arare used te used to image UHC and Co image UHC and COO 
355 nm PLIF images capture CH2O and PAH 
(Parent fuel and products of φ>2 combustion) 

Intake 
Laser 
sheet 

off-axis jet-axis 
side side 

After correction a near seam-Before correction Exhaustless image is obtained 

ICCD Filter Set 355 nm• CG 385 
t = 0.5 mm• Corion 500 nm SP 

PI MAX ICCD 
• 512 by 512 resolution 
• 100 ns gate 
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After correction a near seam-Before correction Exhaustless image is obtained 
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composition at 2000 rpm,hocho (formic acid) 
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Injector leakage is clearly observed in the
images
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UHC from piston top films is 
observed during expansion... 

Single-cycle, 355 nm LIF images, 3 bar load 
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UHC from piston top films is 
observed during expansion... 

...as is UHC embedded in 
crevice flows 
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Single-cycle, 355 nm LIF images, 3 bar load Cycle-averaged, 355 nm LIF image, 4.5 bar load 
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was expelled from the bowl earlier 



 
 

As reported previously, rich mixture pockets
within the bowl are only sporadically observed
As reported previously, rich mixture pockets 
within the bowl are only sporadically observed 
Potential 
UHC/CO 
sources: 

• Injector sac 
dribble 

• Crevice UHC 
and wall films 

• Poor mixture 
formation 
(over-rich re-
gions) 

• Excessively 
lean regions 



 ? 



Multi-dimensional simula-
tions indicate the majority 
of UHC is embedded in 
rich mixture in the lower, 
inner bowl regions 

25°CA 

UHC 

φ 

15% 

20% 



 
 

 

As reported previously, rich mixture pockets
within the bowl are only sporadically observed
As reported previously, rich mixture pockets 
within the bowl are only sporadically observed 
Potential 
UHC/CO 
sources: 

• Injector sac 
dribble 

• Crevice UHC 
and wall films 

• Poor mixture 
formation 
(over-rich re-
gions) 

• Excessively 
lean regions 

 ? 



5°CA 

0°CA 

-5°CA 

15°CA 

25°CA 

Single-cycle, 355 nm LIF images, 3 bar load 

Selected, atypical cycles exhibiting lower, 
inner bowl fluorescence ( ~ 1 cycle in 5) 

Multi-dimensional simula­
tions indicate the majority 
of UHC is embedded in 
rich mixture in the lower, 
inner bowl regions 

25°CA 

UHC 

φ 

Fluoresence from this 
lower-bowl region is only 
seen infrequently 



15% 

20% 



 
 

Deep-UV LIF can detect rich mixture CO
(and UHC?) that is inaccessible at 355 nm
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With both advanced and retarded SOI, the dominant source of increased UHC 
and CO is the squish volume 
- With advanced SOI, the squish volume mixture near the piston top is likely rich 
-	 With retarded SOI, very lean squish volume mixtures increase emissions (rich bowl mix­

ture is seen more frequently in the single-cycle PLIF images) 
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Conventional diesel design guidelines still apply when PCI-like 

combustion is employed in typical diesel hardware geometries: 

A large k-factor and spray targeting within the bowl is desirable 
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• With SOI ≈ -23° (our baseline case), fuel vapor is 
injected into the squish volume 

• Thesquish flow does not force the fuelback 
into the bowl, although no squishvolume fuel 
remains in the jet-axis plane 

• As peak HTHR approached, UHC in near 
stoichiometric mixture is fully oxidized 

• Alarge amount of leanmixture UHC, from 
between two fuel jets and the tail of each 
individual jet, is positioned near the bowl rim 

• The reversesquish flow and gas expansion in 
thebowl forces thismixture into the squish 
volume 

• Leanmixture from near the bowl rim is the 
dominantsource of squishvolume UHC, with a 
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SummarSummaryy
 

• 	 Optical measurements obtained in an engine with realistic geometry, operating in 
an early-injection (PCI-like) combustion regime at a speed and load typical of an 
urban drive cycle, have identified the following sources of UHC and CO emissions: 

- Lean mixtures near the cylinder centerline and in the squish volume (~ 60%) 

-	 Cool mixture expelled from the ring-land crevice & piston top fuel films (~ 20%) 

-	 Fuel associated with nozzle dribble and poor atomization near EOI (~ 15%)
­

-	 Rich mixtures within the bowl (~ 5%) 

• 	 Simulation predictions that rich mixtures are a dominant source of UHC and CO 
emissions are not supported experimentally. At higher loads, or with different 
engine geometries, however, there is clear evidence that rich mixtures are of 
greater importance 

• 	 Lean mixture within the squish volume appears to be dominated by fluid from the 
edges and tails of the fuel jets, forced into the squish volume by gas expansion in 
the bowl and the reverse squish flow 

• 	 Simulations have become useful design tools, but further improvement is required 
to accurately capture LTC UHC and CO emissions behavior 




