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LEV II-ULEV Certified System
with Cummins 6.7L Engine and A/T System 
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NOx release

 Complex multi-component, multi-functional catalyst
 Major advances in the fundamental understanding and application 

of the technology



[1] Epling, Yezerets, Currier et al. “Overview of the Fundamental Reactions and Degradation 
Mechanisms of NOx Storage/ Reduction Catalysts”. Catalysis Reviews; V46(2004), p.163-245
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 Fundamental challenges[1]:
 Multi-component, multi-functional 

catalyst: 
• At least 3 components, with 

different functions
• Both red-ox and acid-base 

catalyst chemistry
 5 sequentially-coupled process
 Memory effects

Short-term memory
 Amount of NOx on the catalyst
 Spatial profile of reactions

Mid-term memory 
 Amount and form of sulfur

Slow, reversible morphological changes
 Ba redistribution 
 Ba aluminate formation and break-up 
 Oxidation state of Rh

Long-term memory
 Thermal deactivation (Pt sintering, loss of Pt/Ba
interface)

NOx Adsorber Technology 

Lean (Rh oxidation):
4Rh + 3O2 2Rh2O3

Rich (Rh reduction):
Rh2O3+3H22Rh+3H2O
Rh2O3+3CO2Rh+3CO2

3Rh2O3+C3H66Rh+3H2O+3CO2



Outline
What is the function of Rh in the catalyst (why 
Rh is important)
 How important is Rh oxidation state
 Rh oxidation

– temperature and duration

 Rh reduction
– Role of reductant speciation, temp, richness
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Why Rh is Important?

 Reduced metal has better reactivity than oxidized metal. 
 Rh is more active than Pt for NO reduction by CO.
 The reactivity of Rh is much more sensitive to its oxidation state 

than Pt

Rh is the key 
component for 
NO reduction in 
the presence of 
CO
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How Important of Rh Oxidation States
 Rh is the key component for NO reduction in LNT catalysts
 NO dissociation is the rate-limiting step of NO reduction

Rh2O3O

O
O
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O

O

 Oxidized Rh has substantially fewer sites for NO adsorption.
 The adsorbed NO is more difficult to dissociate on the oxidized Rh.
 Fewer adjacent sites for NO dissociation
 Thermodynamically less favorable

Reduced Rh Oxidized Rh

Granger et al, J. Catal. 175 (1998) 194-2036



Effect of Temperature on 
“Memory” of Rh Function 
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 The reduced Rh is more active of NO reduction than oxidized Rh.
 The memory effect is highly dependant on temperature
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Effect of Reductant Type on 
“Memory” of Rh Function

300ºC 350ºC

 H2 is very effective for both NOx release and NOx conversion to N2.
 CO is effective for NOx release but not as effective for NOx conversion 

to N2, compared with H2

 C3H6 is not effective for either NOx release or NOx conversion.

Oxidized 
Rh

Oxidized 
Rh

8



Experimental Procedure

650

140

400

NO LO after 
Rh oxidation

NO LO after 
Rh reduction

60 mins

30 mins

20 mins

30 mins

Gas species Rich Lean

NOx 200 ppm 200 ppm

C3H6 2000 ppm -

H2 1.25% -

CO 4.00% -

O2 0.00 % 5%

H2O 5 % 5 %

CO2 5 % 5 %

20 mins 1 min

NO LO after Rh
oxidation at different 

temperatures

Lean
Rich
50s Lean/ 10s Rich
He
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Effect of Temperature on Rh Oxidation

 T50 = 184°C for reduced Rh vs. T50=223°C for oxidized Rh
One-minute lean exposure at high temperature can cause Rh

oxidation

•Reduced Rh: pretreat sample at 400C, 
20 L/R cycles with NO and cool down 

in rich condition to 140C w/o NO
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Effect of Temp on Rh Oxidation

 T50 = 184°C for reduced Rh vs. T50 = 230°C for oxidized Rh
One-minute lean exposure at high temperature can cause Rh

oxidation

•Reduced Rh: pretreat sample at 
400C, 20 L/R cycles with NO and 
cool down in rich condition to 
140C w/o NO
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Experimental Procedure

Lean
Rich
50s Lean/ 10s Rich
He

Gas species Rich Lean

NOx 200 ppm 200 ppm

C3H6 2000 ppm -

H2 1.25% -

CO 4.00% -

O2 0.00 % 5%

H2O 5 % 5 %

CO2 5 % 5 %

650

140

400

NO LO after 
Rh oxidation

60 mins

30 mins

60 mins

5 mins

30 mins

NO LO after Rh oxidation and 
reduced for 5 L/R cycles at 

200, 250, 300, 350 and 400C

20 mins

30 mins

NO LO after Rh Red
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Effect of Temp on Rh Reduction 
During L/R Cycling

 The Rh reach its most reduced state at 300ºC.
 The exposure to temperature higher than 300ºC will partially oxidize 

the reduced Rh.

Note: NO present during the lean oxidation at 650C, cool down to target temp and 5 L/R cycles at the target 
temperature.
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Effect of Rh Redox States on 
C3H6 Oxidation

 Rh oxidation state affects both NO reduction and HC 
oxidation on NOx adsorber catalyst.

Cap.
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Summary

Continued improvements in the understanding of the 
underlying chemistry of LNT operation and lifecycle 
offer opportunities for further system efficiency 
improvements
– Operation
– Catalyst design
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