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= Complex multi-component, multi-functional catalyst

of the technology

= Major advances in the fundamental understanding and applicatiore



NOx Adsorber Technology

Short-term memory
= Amount of NOx on the catalyst
= Spatial profile of reactions
Mid-term memory
= Amount and form of sulfur
Slow, reversible morphological changes

Fundamental challenges!'!:

= Multi-component, multi-functional
catalyst:

* At least 3 components, with
different functions

* Both red-ox and acid-base = Ba redistribution
catalyst chemistry = Ba aluminate formation and break-up
= 5 sequentially-coupled process -[Oxidation state of Rh]
= Memory effects Long-term memory
" Thermal deactivation (Pt sintering, loss of Pt/Ba
interface)
NO > NO, NO, Storage Lean .
— = T Enrichment & Reductant  Lean (Rh oxidation):
Evolution
. 4Rh + 30,> 2Rh,0
Rich Release  Conversion _ ? 2 °
Lean Conditions Rich Conditions Rich ( Rh r eductlon):
Nofe o, Corre] Rh,04+3H,~>2Rh+3H,0
__[NO,|_,

Rh,0,+3C0O~>2Rh+3CO,
3Rh,0,+C,Hs~>6Rh+3H,0+3CO,

Mechanisms of NOx Storage/ Reduction Catalysts”. Catalysis Reviews; V46(2004), p.163-2
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Outline

*What is the function of Rh in the catalyst (why
Rh is important)

* How important is Rh oxidation state
= Rh oxidation

— temperature and duration

= Rh reduction
— Role of reductant speciation, temp, richness




Why Rh is Important?
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= Reduced metal has better reactivity than oxidized metal.
= Rh is more active than Pt for NO reduction by CO.

= The reactivity of Rh is much more sensitive to its oxidation state
than Pt




How Important of Rh Oxidation States

= Rh is the key component for NO reduction in LNT catalysts
= NO dissociation is the rate-limiting step of NO reduction

Reduced Rh Oxidized Rh

= Oxidized Rh has substantially fewer sites for NO adsorption.
= The adsorbed NO is more difficult to dissociate on the oxidized Rh.

" Fewer adjacent sites for NO dissociation
= Thermodynamically less favorable

65 Granger et al, J. Catal. 175 (1998) 194-203 il



Effect of Temperature on
“Memory” of Rh Function

= The reduced Rh is more active of NO reduction than oxidized Rh.
= The memory effect is highly dependant on temperature
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Effect of Reductant Type on
“Memory” of Rh Function
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= H, is very effective for both NOx release and NOx conversion to N,.
= CO is effective for NOx release but not as effective for NOx conversion

to N,, compared with H,

= C;H; is not effective for either NOx release or NOx conversion.



Experimental Procedure
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Effect of Temperature on Rh Oxidation
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= T5o = 184°C for reduced Rh vs. T5,=223°C for oxidized Rh

= One-minute lean exposure at high temperature can cause Rh
oxidation
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Effect of Temp on Rh Oxidation
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*Reduced Rh: pretreat sample at
400C, 20 L/R cycles with NO and
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= T5, = 184°C for reduced Rh vs. T;, = 230°C for oxidized Rh
= One-minute lean exposure at high temperature can cause Rh

oxidation
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Experimental Procedure
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Effect of Temp on Rh Reduction
During L/R Cycling
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= The Rh reach its most reduced state at 300°C.

= The exposure to temperature higher than 300°C will partially oxidize
the reduced Rh.

Note: NO present during the lean oxidation at 650C, cool down to target temp and 5 L/R cycles at the target
temperature.
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Effect of Rh Redox States on

C3He Oxidation
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= Rh oxidation state affects both NO reduction and HC

oxidation on NOx adsorber catalyst.
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Summary

=Continued improvements in the understanding of the
underlying chemistry of LNT operation and lifecycle
offer opportunities for further system efficiency
Improvements
— Operation
— Catalyst design
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