3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro VI Emissions

John E. Kirwan

Presented at DEER 2009 Conference
August 5, 2009
Outline

- Global Emissions and CO₂ Challenges
- Technology Overview for 3-Cyl Boosted GDi Engines
- Value Analysis
- Summary and Conclusions
The Emission Legislation Global Drive

Global emission legislation are evolving toward fuel neutral standards, with emerging countries adopting European legislation.

- **China (nationwide)**
- **India (nationwide)**
- **USA (federal)**
- **Europe**

Emissions Standards

- **Euro 2/BSII**
- **Euro 3/BSIII**
- **Euro 4?**
- **Euro 4** (w/o OBD)
- **Euro 5**
- **Euro 5+**
- **Euro 6**

NOx Emissions Standards (mg/km)

- **NEDC Cycle**
 - **Euro 4**: 250
 - **Euro 5 / 5+**: 180
 - **Euro 6**: 80

- **FTP Cycle**
 - **Tier 2 Bin 8**: 124
 - **Tier 2 Bin 5**: 43

NOx relief is disappearing for EU diesel engines
CO₂ Regulations Globally Introduced

Powertrain/Vehicles will change significantly:
- Dramatic Downsize and Boost ➔ 3-cyl. Turbo GDi
- Hybrids/Electrification required to meet future targets
Outline

- Global Emissions and CO₂ Challenges
- Technology Overview for 3-Cyl Boosted GDi Engines
- Value Analysis
- Summary and Conclusions
Fuel Economy Benefits from Engine Boosting

Downsizing and Downspeeding

- Reduced Engine Displacement and Decreased Engine Speed Increase Engine Load for Reduce Fuel Consumption
 - Good low end torque is essential

\[
P = f(B \cdot V \cdot N)
\]

\[
B1 \cdot V1 \cdot N = B2 \cdot V2 \cdot N
\]

\[
P = f(B \cdot V \cdot N)
\]

\[
B1 \cdot N1 = B2 \cdot N2
\]

Delphi Powertrain
Gasoline Direct Injection is a Key Enabler to Improve Low End Torque in Boosted Engines

- Improved Volumetric Efficiency
 - Direct injection with cam phasing allows scavenging with fresh air to reduce residual gas fraction
- Reduced knock propensity
 - In-cylinder fuel vaporization reduces charge temperature
- Improved combustion phasing
 - Charge motion increases burn rate

Greater than 18bar achievable at 1000rpm with GDi.
Gasoline Direct Injection is a Key Enabler to Improve Low end Torque in Boosted Engines

- Improved Volumetric Efficiency
 - Direct injection with cam phasing allows scavenging with fresh air to reduce residual gas fraction
- Reduced knock propensity
 - In-cylinder fuel vaporization reduces charge temperature
- Improved combustion phasing
 - Charge motion increases burn rate

Benefits

- Fuel economy improvement
 - 9-15% for homogeneous systems
 - 15-21% for stratified systems
- Improved fuel control and rapid catalyst light-off with split-injection during cold start
- Increased power and responsiveness
Gasoline Direct Injection
Boosted Engine System Mechanization
Gasoline Direct Injection
Boosted Engine System Mechanization
System Features

- Inwardly-opening, multi-hole GDi Injectors, fuel rail and engine-driven high pressure fuel pump
- Injection during the intake stroke focused on complete vaporization and mixing of fuel and air
- Stoichiometric operation allows emissions control via traditional 3-way exhaust catalyst
Gasoline Direct Injection Homogeneous Systems

◆ System Features
- Inwardly-opening, multi-hole GDi Injectors, fuel rail and engine-driven high pressure fuel pump
- Injection during the intake stroke focused on complete vaporization and mixing of fuel and air
- Stoichiometric operation allows emissions control via traditional 3-way exhaust catalyst

◆ Key Requirements
- Operation at fuel pressures up to 200 bar
- Injector packaging for cylinder side mount and central mount
- Spray generation for good vaporization and mixing without wetting in-cylinder surfaces
- Good linear flow range
Gasoline Direct Injection
Stratified Systems

System Features
- Outwardly-opening, hollow-cone GDi Injectors, fuel rail and engine-driven high pressure fuel pump
- Central mount injector near spark plug
- Injection during the compression stroke for careful placement of fuel mixture in space and time
Gasoline Direct Injection Stratified Systems

- **System Features**
 - Outwardly-opening, hollow-cone GDi Injectors, fuel rail and engine-driven high pressure fuel pump
 - Central mount injector near spark plug
 - Injection during the compression stroke for careful placement of fuel mixture in space and time

- **Key Requirements**
 - Operation at fuel pressures up to 200 bar
 - Well-atomized and well-placed stratified mixture under engine conditions
 - Multiple injections to confine the fuel mixture
 - High linear flow range
3 Cylinder Engine Analysis
Comparison with 4 Cylinder

- 3 Cylinder Engine Offers Improved Engine Breathing at Full Load
 - Reduced firing frequency increases scavenging for improved full load torque

![Graph showing pressure at valves](image)

- Area of Valve Overlap
- 1500rpm, Full Load
- L4, mono scroll
- L4, twin scroll

(Simulation AVL BOOST)
3 Cylinder Engine Analysis
Comparison with 4 Cylinder

- 3 Cylinder Engine Offers Improved Engine Breathing at Full Load
 - Reduced firing frequency increases scavenging for improved full load torque

- 3 Cylinder Engine Provides Reduced Fuel Consumption and Emissions
 - Reduced heat transfer surface area
 - Reduced quench layer and crevices
 - Lower friction

Source: Weinowski et al. (FEV) 2009 Vienna Motor Symposium

Source: Heil et al. (Daimler) 2002 Vienna Motor Symposium
3 Cylinder Engine Analysis
Comparison with 4 Cylinder

- 3 Cylinder Engine Offers Improved Engine Breathing at Full Load
 - Reduced firing frequency increases scavenging for improved full load torque

- 3 Cylinder Engine Provides Reduced Fuel Consumption and Emissions
 - Reduced heat transfer surface area
 - Reduced quench layer and crevices
 - Lower friction

- 3 Cylinder Engine Increases NVH
 - Unbalanced 1st and 2nd order torque pulses require counterbalancing
 - Results in slight friction increase

Overall Conclusion: 3 Cylinder Engine is the Preferred Configuration for Displacements < 1.5L

Source: Colltman et al. SAE 2008-01-0138 (SABRE Engine)
Outline

- Global Emissions and CO₂ Challenges
- Technology Overview for 3-Cyl Boosted GDi Engines
- Value Analysis
- Summary and Conclusions
Comparison 1.6lt - 4cyl vs. 1.2lt - 3cyl.

No electrification considered

Better

4cyl. MPFI EU4, 1160

DEER 2009 Slide # 19

Delphi Powertrain
Comparison 1.6lt - 4cyl vs. 1.2lt - 3cyl.

- No electrification considered
- 4cyl. Diesel EU4
- 4cyl. MPFI EU4, 1160kg
- 25€/%
- 50€/%

OEM - On Cost [Euro]

CO2 Reduction [%]
Comparison 1.6lt - 4cyl vs. 1.2lt - 3cyl.

- No electrification considered
- 25Euro/%
- 50Euro/%
- 3cyl. Diesel EU6 (with SCR)
- 4cyl. Diesel EU6 (with DeNOx)
- 4cyl. MPFI EU4
- 1.6lt - 4cyl. Diesel EU4
- 1160kg

OEM - On Cost [Euro]

DELPHI
3 Cylinder Engine Value Analysis

DEER 2009 Slide # 21
Delphi Powertrain
Comparison 1.6lt - 4cyl vs. 1.2lt - 3cyl.

No electrification considered

3 Cylinder Engine Value Analysis

Delphi Powertrain
Comparison 1.6lt - 4cyl vs. 1.2lt - 3cyl.

No electrification considered

4cyl. GDi TCI EU6
3cyl. GDi TCI 2 step EU6
3cyl. GDi TCI stratified EU6
4cyl. GDi TCI EU6

25Euro/%

3cyl. Diesel EU6 (with SCR)
3cyl. Diesel EU6 (with DeNOx)
4cyl. Diesel EU6 (with SCR)

50Euro/%

4cyl. MPFI EU4, 1160kg

CO2 Reduction [%]

OEM - On Cost [Euro]
Outline

- Global Emissions and CO₂ Challenges
- Technology Overview for 3-Cyl Boosted GDi Engines
- Value Analysis
- Summary and Conclusions
Summary and Conclusions

- Global CO2 Regulations Will Require Substantial Engine Downsizing and Hybridization

- Significant Reduction in Euro 6 Standards Makes Diesel NOx Emissions Compliance More Challenging and Expensive
 - Global rollout expected and viable

- Gasoline Direct Injection Systems Enable Excellent Low End Torque and Responsiveness in Downsized, Boosted Engines

- 3-Cylinder Gasoline Direct Injection Engines Offer Similar Value in CO2 Reduction Capability (Euros / % CO2 Reduction) at a Significantly Lower On-Cost
 - Particularly Attractive for Compact / Sub-compact Vehicle Customers