
Lawrence Livermore National Laboratory

Multidimensional simulation and chemical kinetics 
development for high efficiency clean combustion engines

 Dan Flowers, Salvador Aceves, William J. Pitz

DOE DEER Meeting
Dearborn Michigan, Aug 5, 2009

This presentation does not contain any proprietary or confidential information
This work performed under the auspices of the U.S. Department of

 

Energy by 
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344



2LLNL-PRES- 123456 DEER 2009

Lawrence Livermore National Laboratory

Our team develops chemical kinetic mechanisms and applies 
them to simulating engine combustion processes

LLNL Team
•

 
Salvador Aceves

•
 

M. Lee Davisson
•

 
Dan Flowers

•
 

Mark Havstad
•

 
Nick Killingsworth

•
 

Matt McNenly
•

 
Marco Mehl

•
 

Tom Piggott
•

 
William J. Pitz

•
 

J. Ray Smith
•

 
Russell Whitesides

•
 

Charles K. Westbrook 

Partners
•

 

DOE working groups
•

 

Sandia Livermore
•

 

Oak Ridge
•

 

Los Alamos
•

 

International
•

 

UC Berkeley
•

 

University of Wisconsin
•

 

University of Michigan
•

 

Chalmers University
•

 

FACE working group
•

 

National Univ. of Ireland
•

 

RPI
•

 

Princeton University
•

 

Univ. of Tokyo



3LLNL-PRES- 123456 DEER 2009

Lawrence Livermore National Laboratory

We apply simulations methodologies to gain insight into 
advanced combustion regimes 

Prediction of partially stratified 
combustion with kiva3v-multizone Improved surrogate chemical 

kinetic model for gasoline

Simulating SI-HCCI 
transition with ORNL

Prediction of PCCI combustion with 
an artificial neural network-based 
chemical kinetic model

Improved kinetic solver numerics
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

 

Improving models for diesel 
engines

•

 

Completed development of 
high and low temperature 
model for heptamethyl nonane, 
important component and 
primary reference fuel for 
diesel



 

Improving models for gasoline-

 
fueled engines: 

•

 

Completed validation of component 
models for n-heptane, iso-octane 
and toluene, important components 
for gasoline fuels

CH3



 

Developed new surrogate models 
for gasoline fuels

We continue to expand and improve chemical kinetic 
mechanisms for diesel and gasoline components
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

 

One of the two primary reference fuels for 
diesel ignition properties (cetane number)

•

 

n-hexadecane 

•

 

2,2,4,4,6,8,8 heptamethylnonane



 

High and low temperature portion of the    
mechanism complete

•

 

First-ever complete set of high and low 
temperature kinetic mechanisms for 
heptamethylnonane

Recommended surrogate for diesel 
fuel (Farrell et al., SAE 2007):

We have developed a model for heptamethylnonane, a 
primary reference fuel for diesel
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n-alkane
branched alkane
cycloalkanes
aromatics
others

butylcyclohexane
decalin

hepta-methyl-nonane

n-decyl-benzene
alpha-methyl-naphthalene

n-dodecane
n-tridecane
n-tetradecane
n-pentadecane
n-hexadecane

tetralin

New diesel component 
model this year

New 
components 
last year

New 
component 
next year

Diesel Fuel Surrogate palette: 
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Site-specific 
reaction rates 
for HMN
based largely on 
iso-octane

Heptamethylnonane (HMN) has a lot of structural 
similarities to iso-octane

HMN

iso-octane
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Heptamethyl nonane (HMN) detailed chemical kinetic 
mechanism contains 1114 species 4468 reactions



 
Iso-octane and HMN are surrogate components useful 
for Fischer-Tropsch fuels that can be bio-derived



 
Mechanism includes low and high temperature 
reactions => can examine low temperature combustion 
strategies in engines



 
Recent experiments now available on HMN for 
mechanism validation

2,2,4,4,6,8,8 heptamethylnonane
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Recent experimental results show excellent 
agreement with modeling for HMN

Experimental data shock tube data on iso-cetane (or HMN) from 

Oehlschlaeger et al, Rensselaer Polytechnic Institute, 2009
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Improved component models

Recent improvements to fuel surrogate models:
 Gasoline
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Improving numerics: Processing the Jacobian is the most 
computationally expensive part of CHEMKIN-Multizone 



 

94% of the total computational cost solving kinetic ODEs is spent 
generating the Jacobian and solving the associated linear system.

Computational breakdown of the CHEMKIN - Multizone model
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We apply LLNL’s ODE integrator 
with an iterative matrix solver (DLSODPK)



 

Use LLNL’s iterative solver DLSODPK along with a preconditioner matrix P
P-1Ax = P-1b



 

Here P is the Jacobian of a simplified CHEMKIN-multizone model that yields 
a block diagonal matrix (neglecting interaction between zones)

Internal zone 
variables

Zero
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The new DLSODPK scheme accelerates computations 
enabling detailed multizone kinetics on desktop PCs

Computational breakdown of the CHEMKIN - Multizone model
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250x speedup for 40 zones; 24 minutes (100 hours) 63 species
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We are analyzing ORNL results for stability and emissions 
during SI-HCCI transition due to increased residual gas fraction

Ignition
Heat
transfer 
to walls

Flame propagation
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1-dimensional chemical kinetic model 
matches pressure traces well for motored, SI and HCCI cases



 
Spark-ignited 

 
HCCI (RGF=75%)
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ORNL Test data for SI to HCCI transition: 
heat release patterns vary with residual gas fraction

Increasing RGF

Increasing RGF

Spark-ignited (RGF~10%)

HCCI (RGF~60%)
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LLNL
 

Simulation results for SI to HCCI transition: 
heat release patterns vary with residual gas fraction

Increasing RGF

Increasing RGF

Spark-ignited (RGF~10%)

HCCI (RGF~60%)
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We are analyzing three consecutive cycles 
of the Sandia automotive PCCI engine (Steeper)
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The Sandia engine runs in PCCI mode with dual injection:
 one injection during NVO and a main injection 



20LLNL-PRES- 123456 DEER 2009

Lawrence Livermore National Laboratory
LLNL-PRES-123456

KIVA3V-MZ-MPI shows promise for 
accurately predicting direct injected PCCI 
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Summary: we are enhancing our analysis capabilities 
and improving computational performance

Partially stratified combustionGasoline surrogate

HCCI-SI transition modeling60x-250x Improved numerics
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Summary: we are expanding the range of mechanisms 
available for representative fuel components

Diesel Fuel Palette Gasoline Fuel Palette
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Appendix
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Improved component models

Recent improvements to fuel surrogate models:
 Gasoline
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n-Heptane and iso-octane behave well over a wide 
pressure and temperature range 
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Shock tube and rapid compression machine 
validation of n-heptane & iso-octane 
mechanisms:
n-heptane:
P = 3 -

 

50 atm
T = 650K -

 

1200K
= 1

Minetti R., M. Carlier, M. Ribaucour, E. Therssen, L. R. Sochet (1995); H.K.Ciezki, G. Adomeit (1993); Gauthier B.M., D.F. Davidson, R.K. 
Hanson (2004);  Mittal G. and C. J. Sung,(2007);

 

Minetti R., M. Carlier, M. Ribaucour, E. Therssen, L.R. Sochet (1996); K. Fieweger, R. 
Blumenthal, G. Adomeit (1997).

Significant improvements over the 
whole range of pressures

iso-octane:
P = 15 -

 

45 atm
T = 650K -

 

1150K
= 1
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After much development work, toluene 
mechanism behaves quite well

Good agreement with experimental 
measurements

The model  explains the differences 
between the ignition delay times 
obtained in shock tube and rapid 

compression machine experiments

Species profiles measured in a jet 
stirred reactor are correctly 
reproduced as well
P = 1 atm
Τ

 

= 0.1s

Dagaut, P., G. Pengloan, Ristori, A. (2002)

Mittal G. and Sung, C.J. (2007) 

Vanderover, J.  and Oehlschlaeger, M. A.  (2008)
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Examined binary and surrogate mixtures relevant 
to gasoline fuels

n-paraffins

arom atics

olefins

naphthenes

Oxygenates

Iso -paraffins

CH3CH3

CH 3CH 3

EtOH , MTBE, ETBE

Gasoline fuel surrogate palette
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Mixture  3.9-4.9 atm

N-heptane 3.3-4.6 atm

Mechanism simulates well n-heptane/toluene mixtures in a rapid 
compression machine

•

50% 50%

Toluene delays the low temperature heat release 
and high temperature ignition

Allylic site on toluene depresses reactivity of 
mixture by formation of unreactive benzyl radicals

R• RH

Experiments: Vanhove, G., Minetti, R., Petit, G. (2006)
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65% 35%

Vanhove, G., Minetti, R., Petit, G. (2006)

Iso-octane/toluene mixtures well simulated

Interactions similar to those 
observed for n-heptane

Toluene addition lowers low temperature 
heat release and delays high temperature 
ignition
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Iso-octane/1-hexene mixtures well simulated

Allylic site on 1-hexene depresses reactivity of 
mixture

Some low temperature reactivity from 1-hexene

82% 18% •
R• RH

• Ketohydroperoxides + OH

Radical Scavenging from the double bond

•OH
HO •

Experimental data: Vanhove, G., Minetti, R., Petit, G. (2006)
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Mixture  11.4-13.9 atm

Experimental data: Vanhove, G., Minetti, R., Petit, G. (2006)

Reasonable agreement for toluene/1-hexene mixtures

30% 70%

•

Formation of allylic radicals suppresses reactivity

•

Some low temperature reactivity from 1-hexene

• Ketohydroperoxides + OH

LLNL-PRES-411416
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Surrogate 11.8-14.8 atm

Gasoline surrogate well simulated

47% 35% 18% 50% 35% 15%

Experiments: Vanhove, G., Minetti, R., Petit, G. (2006)

Rapid compression machine validation Jet stirred reactor validation: 
10 atm, τ

 

= 0.5 s
Experiments: M. Yahyaoui, N. Djebaïli-Chaumeix, P. Dagaut, C.-E. Paillard, S. 
Gail (2007) 
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Key component interactions identified

n-alkane

R

RR
Long unsaturated chain promotes 
low temperature reactivity

n-alkene

Double bonds act as radical

 

 
scavenger –

 

allylic sites depress

 

 
reactivity

toluene

Iso-alkane

Primary sites reduce reactivity –

 
substitutions on the chain interfere 
with isomerizations

Abstraction on the 
benzylic site generates 
stable radicals –

 
suppresses reactivity
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HCCI engine results:
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PRF80 Experimental

PRF54 2002 Mechanism

PRF68 2008 Mechanism

1050 rpm
1200 rpm
1300 rpm
1400 rpm
1500 rpm
1600 rpm
1700 rpm

a)

b)

c)

(Dec and Sjöberg
Sandia)

New 2008 mechanism

2002 mechanism

PRF80
fueling

Better simulation of 
heat release rate
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PRF80 Initial Species Results

•

 

Greater than 50 identifiable species in the 

 exhaust

•

 

Similarity to results from iso‐octane and 

 Chevron‐Phillips Reference Gasoline
•

 

Many species in common, but relative amount 

 
varies

•

 

Larger distribution of oxygenated species in 

 near‐misfire exhaust conditions

PRF80

PRF80

Major exhaust species besides unburned fuel

2-methyl-1-propene

Hydrocarbons

Oxygenated hydrocarbons



36LLNL-PRES- 123456 DEER 2009

Lawrence Livermore National Laboratory
LLNL-PRES-123456

O

O

We collaborate with others to reduce our models for use 
in reacting flow codes

3036  species
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Model: methyldecanoate

Experiments: n-decane (Huang, Sung, and Eng, CF 2007)

Fuel/O2/N2

1 atm
360K
N2/O2=3.76 (air-like 
diluent)

Laminar flame 
speeds of MD 
compare well with n-

 
decane

Tianfeng Lu and C. K. Law, 2009

940 species
3887 reactions

211 species
794 reactions

n-decane Methyl-decanoate, biodiesel surrogate

Niemeyer, Raju and Sung, 2009
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We now have state-of-the-art, chemical kinetic 
models for transportation fuels


 
Gasoline
•

 
n-heptane

•

 
iso-octane



 
Diesel
•

 
n-cetane

•

 
iso-cetane



 
Biodiesel

LLNL-PRES-411416
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Mechanisms are available on LLNL website and by email

http://www-pls.llnl.gov/?url=science_and_technology-chemistry-combustion
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Future activities



 
large alkyl benzene, important component for diesel 
fuel



 
gasoline surrogate with ethanol



 
larger olefins in present gasoline (C5, C6 branched 
olefins, nC7 olefins) for Advanced Petroleum Based 
Fuels



 
actual biodiesel component (methyl stearate) for Non-

 Petroleum Based Fuels

Develop detailed chemical kinetic models for:

LLNL-PRES-411416
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Detailed kinetics of 
gasoline surrogates

High fidelity 
engine models

testing 

tuning 

5.88 mm
(0.2314 in)

5.23 mm
(0.206 in)

9.01 mm
(0.355 in)

0.305 mm
(0.0120 in)

102 mm
(4.02 in)

HCCI is a promising engine operating regime, and is also an excellent 
platform for developing & testing high fidelity chemical kinetic

 
models
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Gasoline surrogate model accurately predicts ignition time 
as a function of equivalence ratio
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But it does not properly replicate ignition time
 as a function of intake pressure 
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Analysis of pressure sensitivity of low temperature reaction steps 
may offer guidance toward improving quality of agreement 

Radical 
recombination
R + O2

 

 RO2

Chain branching
O2

 

QOOH  HO2

 

QO + OH 
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Increasing the reactivity of the radical recombination reaction 
R + O2

 

 RO2

 

matches experimental results up to ~1.7 bar intake 
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We obtain improved agreement by reducing activation energy 
of chain branching reactions as a function of pressure 
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•

 

Lee Davisson (LLNL) in collaboration with John Dec and Magnus 
Sjöberg, Sandia

•

 

Expanded sample standards to 25 neat materials, including oxygenated 
hydrocarbons

•

 

Developed HPLC method for derivatized C1-C5 aldehydes and ketones

•

 

Collected and measured HCCI exhaust species using PRF80 fuel in 
Sandia engine


 

Pre-mix phi sweep from 0.32 to 0.08 equivalence ratio



 

Collected several at near misfire conditions



 

Analytical work 95% complete



 

Data analysis ongoing
o

 

e.g., comparison to previous gasoline and isooctane results

We have obtained engine speciation data for validation of 
HCCI KIVA multizone model with detailed chemical kinetics
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Reactivity for HMN is between those of iso-octane and 
large n-alkanes
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Similar behavior seen at 40 bar

fuel/air mixtures
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similar compared 
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