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Overview

HCCI shows promise for meeting future HD NOx
limits (Duffy et al., DEER 2004)

Major hurdles: high hydrocarbon CO emissions
Low exhaust temperatures below typical light-off

Program initiated Summer 2004 (at PNNL) to survey 
work in low temperature oxidation (CO) and propose 
roadmap

Low-Temperature Oxidation Catalysts for HCCI 
Emissions Control



Objectives
Develop low-temperature HC & CO oxidation 
catalysts to enable HCCI application

CO Conversion
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Specifications to vendors:
HC oxidation:

 

90% at 175oC and higher
HC light-off:

 

50% at < 150oC
CO oxidation:

 

99% at higher temperatures
CO light-off:

 

50% at < 150oC

Akin to the cold start problem, 
except the exhaust never 
reaches light-off temperatures 
on commercial catalysts.
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System Investigations
Addition of transition metals praseodymium (Pr) and terbium (Tb)

 believed to enhance low-temperature REDOX capacity of the 
CeO2

 

catalyst, improving the low-temperature oxidation capacity.
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Ferrer, V. et al Catal. Today

 
2005, 107-108, 487-492

Logan, A. D. et al J. Mater. 
Res. 1994, 9, 468-475
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System Characterization Efforts
TPO Investigations of Pd Catalysts

Shoulder at 159-171°C 
is due to Pr, and more 
noticeable upon ↑

 

Pr.

200-228°C is Pd 
oxidation.  Increased

 

Pr 
decreases

 

T required to 
facilitate Pd-interaction 
with support; i.e. Pd is 
more readily oxidized as 
Pr increases.

This is seen again by Pd 
oxidation at 64-74°C.7.00
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System Characterization Efforts
BET Investigations of Pd Catalysts
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Small amounts of Pr 
(0-20%) believed to 
not reduce surface 
area of CeO2

Larger amounts 
(>20%) impact the 
surface up to 100% 
PrO2

 

with surface area 
<10 m2/g
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System Characterization Efforts
Pore Distribution Investigations of Pd Catalysts
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10%-20% Pr brings in larger (≥
 

20nm) pores, shifts maxima 
slightly to larger pores asymmetrically.
>20% significantly decreases maxima, drastic broadening 
of the peak towards larger pore sizes asymmetrically.
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System Characterization Efforts
Metal Dispersion Investigations of Pd Catalysts

Optimal metal-support interaction at 10-20% Pr loading.

Increased synergy 
of Pd with support 
at 10-20% Pr 
loading; ‘spill-over’

 effect* results in 
>100% effective 
dispersion.
*Gatica, J. et al J. Phys. Chem. 
B 2001, 105, 1191-1199

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100
%Pr [1-X] in CeXPr1-XO2 Support

H
2 c

he
m

is
or

be
d,

 m
L/

g-
m

et
al

0

20

40

60

80

100

120

140

Pd
 d

is
pe

rs
io

n,
 %



Review
Cex

 

Pr1-x

 

O2

 

System Characterization Efforts
Crystal Cell Parameter of Pd Catalysts

5.4

5.41

5.42

5.43

5.44

5.45

5.46

5.47

5.48

0 20 40 60 80 100
%Pr [1-X] in 2%Pd/CeXPr1-XO2

C
ry

st
al

 c
el

l p
ar

am
et

er
 a

=b
=c

, A

10%-20% Pr results in ‘swelling’
 

of the crystal structure.
This is lost with >20% Pr.
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System Characterization Efforts
XRD Pattern of Pd Catalysts

Pr blends into support as PrO2

 

; Pr6

 

O11

 

ultimately forms



Engine Testing at Caterpillar

Modified Caterpillar 
Engine Operating 

Under HCCI

PNNL Catalyst

CAT Catalyst

FT-IR, temperature 
data collected

PNNL & Caterpillar®
 

diesel oxidation catalysts
2.47 L each
25% total flow: 35K/hr to 122K/hr SV

Catalyst Supplier oxidation catalyst
17 L
100% total flow: 13K/hr to 26K/hr SV.

Blank

Blank



Normalizing for Space Velocity
Caterpillar Engine Testing
Normalizing for space velocity (assuming 1st order kinetics 
and mass transfer limitation)

 Allows comparison of PNNL/CAT catalysts to SV of a 
commercial supplier catalyst at total flow
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= fractional NOx conversion efficiency

= space velocity (SV) of interest

= reference SV at which conversion 
efficiency is known



Engine Testing
Carbon Monoxide (CO) Results
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Supplier catalyst: 240% precious metal loading vs. PNNL catalyst.
T50

 

CO target (150°C) nearly reached with PNNL catalyst!



Engine Testing
Ethylene (C2

 

H4

 

) Results

Neither sample exhibited good C2

 

H4

 

activity.
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Engine Testing
Unburned Fuel (>C5

 

) Results
PNNL catalyst reached T90

 

HC @ <240°C.
Catalyst supplier did not achieve T90

 

HC until almost 350°C!
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Engine Testing
PNNL Emissions 
Target Analysis
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Engine Testing
PNNL Fresh vs. Aged Results
Following fresh catalyst testing (11 point test array, repeated 3 

times), catalyst aged on engine by exposing to 450°C/4 hours.
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Summary

Engine test conducted at Caterpillar on HCCI 
configured engine.
Testing allowed comparison of vendor-supplied 
catalyst to PNNL-formulated catalyst.
Vendor supplied catalyst contained 2.4 times the 
metal loading density versus PNNL catalyst.
PNNL catalyst nearly achieved T50

 

(CO) target.
PNNL catalyst achieved T90

 

(HC) target at <240°C.  
Supplier catalyst required almost 350°C.
Good aging results on engine.
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