Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil – impact on wear

Oyelayo Ajayi, Robert Erck, Ali Erdemir, George Fenske, and Irwin Goldblatt*

*BP-Global Lubricant Technology, Wayne, NJ

14th DEER Conference, Dearborn, MI
August 4-7, 2008
Background

- Exhaust gas recirculation (EGR) is an effective means to reduce NOx emission from diesel engine

- EGR will contaminate engine oil
 - Increase of oil soot loading
 - Increase in oil total acid number (TAN)

- EGR will result in durability problem for many lubricated engine components due to accelerated wear

- Goal: Mitigate detrimental impact of EGR on engine components through materials, surface and lubricant technologies.
Approach

- Characterize and quantify effect of EGR on lubricant degradation
 - Physical, chemical, etc.

- Evaluate impact of lubricant degradation on friction and wear behavior

- Develop and evaluate material and surface technologies for improved friction and wear performance in EGR environment

- Develop and evaluate advanced lubricant formulation for EGR
 - Impact of regulation
Oil Degradation – physical

- Used oils from Cummins M-11 engine tests were characterized

<table>
<thead>
<tr>
<th></th>
<th>A (New oil)</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity at 100 °C (cSt) (start of engine test)</td>
<td>14.40</td>
<td>14.39</td>
<td>14.55</td>
<td>14.86</td>
</tr>
<tr>
<td>Viscosity at 100 °C (cSt) (end of engine test)</td>
<td>-</td>
<td>24.95</td>
<td>42.91</td>
<td>120.52</td>
</tr>
<tr>
<td>Total Acid Number (TAN)</td>
<td>1.1</td>
<td>3.81</td>
<td>2.08</td>
<td>2.36</td>
</tr>
<tr>
<td>Total Base Number (TBN)</td>
<td>10.43</td>
<td>8.42</td>
<td>6.11</td>
<td>5.33</td>
</tr>
<tr>
<td>Soot Content (%)</td>
<td>0</td>
<td>6.9</td>
<td>9.0</td>
<td>12.0</td>
</tr>
</tbody>
</table>
Oil Degradation

- Oil viscosity increases as 4th power of soot content.
- Oxidation may also contribute to oil thickening.
- Soot content of 4.5% limit in engine tests.

- TAN and TBN variation as expected.
- None of used oils reached cross over point.
Oil Degradation – Additives

- Used oils from Cummins M-11 engine tests chemical composition (ppm) characterized by standard spectrochemical analysis

<table>
<thead>
<tr>
<th>Element</th>
<th>A (New oil)</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron (Fe)</td>
<td>1</td>
<td>119</td>
<td>147</td>
<td>58</td>
</tr>
<tr>
<td>Chromium (Cr)</td>
<td>< 1</td>
<td>18</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Molybdenum (Mo)</td>
<td>< 5</td>
<td>6</td>
<td>< 5</td>
<td>< 5</td>
</tr>
<tr>
<td>Phosphorus (P)</td>
<td>1247</td>
<td>750</td>
<td>756</td>
<td>304</td>
</tr>
<tr>
<td>Zinc (Zn)</td>
<td>1356</td>
<td>1111</td>
<td>945</td>
<td>843</td>
</tr>
<tr>
<td>Calcium (Ca)</td>
<td>3992</td>
<td>1096</td>
<td>3058</td>
<td>999</td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>14</td>
<td>10</td>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>

- Increase iron content from wear
- Decrease in additive content – additive depletion
Soot (Solid) Particles

- Insoluble solid particles in used oil consist of many components.
 - Carbon, iron oxide, metallic wear debris

- Variety of sizes and shapes
Preliminary Friction and Wear Test

Test configuration:
Four-ball (ASTM D 4172)

Balls: ½” diameter M50 steel
Load: 73 N
Speed: 1200 rpm
Lubricant: New and used oil from Cummins M-11 engine test
Duration: 1 hour
Friction Results

- Friction coefficient nearly constant for duration of test for all oils
- Periodic spike in friction for all the used oils
Friction Results

- Average friction for used oil slightly lower than for clean oil
 - Effect of viscosity increase on fluid film
 - Carbon soot acting as solid lubricant
Wear Results

Substantial increase in wear in tests with used oils

- Oil degradation leads to less protection of rubbing surfaces
 - Change in chemistry
 - Presence of solid particles
Wear Results

For the limited data points in the present study:
- Wear volume not dependent on soot content
- Wear appears linearly dependent on TAN

\[y = -3.752 + 3.6301x \quad R^2 = 0.9858 \]
Wear Mechanism – clean oil

- Evidence of abrasive and oxidative wear
- Formation of surface films – reaction with lubricant additive
Wear Mechanisms – used oil

- For used oils B and C, wear similar – primarily abrasive, with less surface films
- For used oil D, in addition to abrasion, evidence of corrosion and scuffing
 - Higher TAN (corrosion) and soot content (scuffing).
 - Soot interferes with lubricant entrainment into the contact
Conclusions

- Exposure of oil to EGR during diesel engine testing resulted in accelerated degradation of oil
 - Increase in soot content resulting in significant increase in oil viscosity
 - Increase TAN and more rapid decrease in TBN
 - Oil additive depletion

- Although the used oil reduced the average friction during a four-ball bench-top test, wear was increased by about two orders of magnitude compared to new oil.

- In the tests with used oils, predominant wear mode is abrasion, aided by corrosion.
 - Scuffing was also observed in test with 12% soot content.

- No clear trend correlation can be established between bench-top friction and wear testing and wear during engine test.
The End

Thank you!

This work was supported by the Office of Vehicle Technologies of the U.S. Department of Energy under contract DE-AC02-06CH11357