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Introduction


•	 Advanced LTC diesel and HCCI engines can provide both high 
efficiencies and very low emissions of NOX and PM. 

•	 Nearly all LTC and HCCI strategies use high levels of EGR/residuals. 
1.	Reduce peak combustion temperatures to control NOX. 

2.	Delay the onset of ignition. 
⇒	Controlling combustion phasing. 
⇒	For HCCI-like diesel, it allows more time for premixing before ignition. 

3. For gasoline HCCI, hot residuals are used to promote autoignition, and 
combined with cooled EGR, to control combustion phasing and NOX. 

•	 Although EGR is widely used, its thermodynamic and chemical effects  
on autoignition are only understood in general terms. 

•	 Objective: Provide a fundamental understanding of how EGR and 
its constituents affect the autoignition of single- and 
two-stage ignition fuels. 
–	 Conduct well-controlled experiments in an HCCI engine. 



HCCI Engine and Subsystems


Only premixed 
fueling is used 
for this study. 

Cummins B 
0.98 liter / cyl.

CR = 14 piston 

EGR Systems 
z Real EGR 
z Simulated EGR & 

EGR constituents 
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• Establish baseline operating points 

for all four fuels.

• CA50 = 368°CA (8° aTDC)
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• Study the retarding effects of EGR 
 10


and its constituents.
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• Iso-octane and gasoline exhibit 

single-stage autoig. at these conds.
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• PRF80 and PRF60 have two-stage 
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autoignition with LTHR. 
– Similar to diesel fuel (CN = 21 & 30). 
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• Baseline conditions have no EGR 

except for PRF60 ⇒ 29% CSP.


Operating Conditions 
Pin = 100 kPa (naturally asp.) 

1200 rpm. 
C/F-mass ratio = 37.8, 
(φ = 0.40 without EGR.) 
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Composition of EGR (CSP) 
• Consider complete combustion of iso-octane in "air". 

(Argon and atmospheric CO2 lumped with N2.) 

• C8H18 + 12.5 (O2 + 3.773 N2) ⇒ 8 CO2 + 9 H2O + 47.16 N2. 

• For complete combustion with φ = 1, the gas composition (excl. fuel) 
changes from air: 21% O2 & 79% N2 (mole basis). 

• to: 12.5% CO2, 14.0% H2O and 73.5% N2 for wet exhaust (CSP). 

• to: 14.5% CO2 and 85.5% N2 for dry exhaust (Dry CSP). 

• These gas compositions will be referred to as: 
Complete Stoichiometric Products • CSP & Dry CSP. 



Thermodynamic Effects of EGR (CSP)


• EGR influences the compressed-gas temperature. 
– Heat-capacities of CSP & individual components are different from that of air. 

• Start with motored operation. ⇒ Examine effects of CSP & its 
components on the mass-averaged temperature near TDC. 

• Displace air while 
maintaining Pin = 100 kPa. 900 

890 

• Trends can be explained by 880 

changes in specific heat (Cv). 
Te

m
pe

ra
tu

re
 @

 3
50

°C
A

 [K
]

870 

– CO2 has highest Cv (mole bs.). 860 
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– CSP between air and H2O. 830 
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Autoignition Retard for iso-Octane 

• Investigate the effect of these gases on combustion phasing. 

• The autoignition retard is highly dependent on the type of the diluent. 

• The retarding effect of the various gases is ordered consistently with 
their "cooling capacity" - thermodynamic effect. 

• However, N2 addition increases the compression temperature, but the 
phasing is retarded, so there must be a weak chemical [O2] effect. 
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• Retarding effect of lower [O2] 

becomes more significant at 

higher levels of N2 addition.

– Clearly, reduction of [O2] has to 


lead to misfire at some point.


• Temperature traces illustrate 
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Autoignition Retard for PRF80 (2-Stage Ignition) 

• For PRF80, the retarding effects are not consistent with the "cooling 
capacity" of the added gases (except for CO2). 

• N2 addition (reduced [O2]) strongly retards combustion phasing. 
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Autoignition Retard for PRF80 - [O2]

• Second, a reduced [O2] also affects hot ignition. 
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All Constituents for PRF80 - H2O


• Thermodynamic "cooling" should add to [O2] effect for all constituents. 

• Why is the retarding effect of H2O equal to N2? 

• H2O enhances the intermediate chemistry, so thermal run-away occurs 
at lower temperature. 
– Almost perfectly counteracts the cooling effect of H2O! 

• Also explains why CSP is less retarded than dry CSP. 

• H2O does not enhance the intermediate chemistry for iso-Octane. 
374 

373 

372 

371 

370 

369 

368 

367 

366 

10
%

 B
ur

ne
d 

[°
C

A
]

880 

900 

920 

940 

960 

980 

1000 

350 355 360 365 370 375 
Crank Angle [°CA] 

M
as

s-
A

ve
ra

ge
d 

Te
m

p.
 [K

]

iso-Octane, CO2 
iso-Octane, H2O 
PRF80, N2 
PRF80, H2O 

PRF80 
CA10 ≈ 371°CA 

iso-Octane 
CA10 ≈ 370.4°CA 

1919.2 19.4 19.6 19.8 2020.2 20.4 20.6 20.8 21 
Intake O2 Mole Fraction [%] 

CO2 
H2O 
N2 
Dry CSP 
CSP 

Tin = 72°C 



366

367

368

369

370

371

372

373

131415161718192021
Intake O2 Mole Fraction [%]

10
%

 B
ur

ne
d 

[°
C

A
]

N2 addition

366

367

368

369

370

371

372

373

131415161718192021
Intake O2 Mole Fraction [%]

10
%

 B
ur

ne
d 

[°
C

A
]

N2 addition

366

367

368

369

370

371

372

373

131415161718192021
Intake O2 Mole Fraction [%]

10
%

 B
ur

ne
d 

[°
C

A
]

N2 addition

Comparing [O2] Sensitivities 
• Have now identified three mechanisms by which EGR affects phasing. 
1. Cv effect (thermodynamic – retarding). 
2. O2-concentration effect (chemical – retarding). 
3. H2O effect (chemical – enhancing). 

• Compare side by side for all fuels. 

• N2 addition gives most reduction 
in [O2] for least change in Cv. 
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• The two-stage ignition fuels 

PRF80 and PRF60 are 371 

much more sensitive. 370 

369 
• Lower [O2] both reduces 

LTHR and counteracts 368 

the hot ignition. 367 

366 
• Gasoline is initially very 

insensitive to [O2]. 
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Comparing Thermal Sensitivities


1. Cv effect (thermodynamic – retarding). 
2. O2-concentration effect (chemical – retarding). 

3. H2O effect (chemical – enhancing). 

• CO2 addition gives most 
thermodynamic cooling, with 373 

least change in [O2]. 
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Proceedings of the Combustion 366 

Institute, Vol. 31, pp. 2895–2902, 
2007. 



Comparing CSP Effects


1. Cv effect (thermodynamic – retarding). 

2. O2-concentration effect (chemical – retarding). 

3. H2O effect (chemical – enhancing). 

• The overall effect of CSP results from the combination of these three 
mechanisms. 
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Real EGR Effects


• Real EGR contains trace species 373 
372 

that also affect the autoignition. 371 

– Unburned fuel, partially oxidized 370 
369 

fuel, formaldehyde, CO, and other 368 

species. 367 
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• For iso-Octane and Gasoline, 365 

372 real EGR retards less than CSP. 371 
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• For PRF80, real EGR has a 369 

retards slightly more than CSP. 368 
367 
366 

• The net effect of these species is 365 

to advance the ignition for iso- 372 
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octane and gasoline... 370 
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• ...but to retard it for PRF80. 368 
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Iso-Octane Gasoline PRF80 PRF60

± Effect: Single-stage Two-stage with LTHR

Cv effect (thermodynamic) Strong Weak Retarding

[O2] effect (chemical) Weak Strong

Enhancing H2O effect (chemical) None to weak Strong

Trace Species Moderate enhancing Moderate retarding 

Iso-Octane Gasoline PRF80 PRF60

± Effect: Single-stage Two-stage with LTHR

Cv effect (thermodynamic) Strong Weak Retarding

[O2] effect (chemical) Weak Strong

Enhancing H2O effect (chemical) None to weak Strong

Trace Species Moderate enhancing Moderate retarding 

Summary / Conclusions 
• EGR is very effective for suppressing autoignition reactivity. 

– Can be used beneficially for controlling combustion phasing across load 
and speed ranges. 

Iso-Octane Gasoline PRF80 PRF60 

± Effect: Single-stage Two-stage with LTHR 

Retarding Cv effect (thermodynamic) Strong Weak 

[O2] effect (chemical) Weak Strong 

Enhancing H2O effect (chemical) None to weak Strong 

Trace Species Moderate enhancing Moderate retarding 

• The net result of the different thermal, O2, and H2O sensitivities is a 
fairly similar effect of CSP for all fuels. 

• Trace species (unburned and partially oxidized fuel, and CO) influence 
the effect of real EGR. 

Details in: SAE 2007-01-0207 
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Autoignition Retard for PRF80 - [O2] 
• Lower [O2] also affects hot ignition, in addition to reducing the LTHR. 
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Autoignition Retard for Gasoline 

• N2 addition shows that the chemical [O2] effect is very weak. 

• Retarding effect of H2O is weaker than expected based on its high Cv. 

• CSP (with water) has a slightly weaker retarding effect than dry CSP. 

• Temperature traces confirm that H2O has an enhancing effect on 
autoignition for gasoline. 

• Effect is stronger than for iso-octane, but much weaker than for PRF80. 
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Real EGR Effects (2)

• Intake concentrations increase with 

EGR level and retard. 373 
372 

• These effects of Real EGR are also 371 
370 important for explaining the effects of 369 

retained residuals. 368 
367 

• Discussed in Proceedings of the 366 
Combustion Institute, Vol. 31, pp. 365 
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Compare with NIST Database 
• All air displacement except N2 reduce the compression temperature. 
• Can be explained by changes of the specific heat capacity. 
• CO2 has highest specific heat capacity on a mole basis. 
• H2O has high specific heat capacity. 
• N2 has slightly lower specific heat capacity compared to air. 
• CSP falls between Air and H2O. 
• Dry CSP has slightly lower Cv compared to CSP. 
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