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National Waste Energy Recovery
 Magnitude of the Opportunity –

 

Why Are We Interested?
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60-70% Energy Loss in Most of Today’s Processes


 

Transportation Sector


 

Light-Duty Passenger Vehicles + Light-Duty Vans/Trucks (SUVs)
2002:   129.8 billion gallons of gasoline  
2004: ~135    billion gallons of gasoline

~ 4.5 quads/yr  exhausted down the tail pipe
~ 5.5 quads/yr  rejected in coolant system



 

Heavy-Duty Vehicles
2002:   29.8 billion gallons of diesel
2004:   32    billion gallons of diesel

~1.45 quads/yr  exhausted down the tail pipe
~1 quad/yr  rejected in coolant system (~1 quad)



 

Hybrid Electric Vehicles
Move Toward Electrification –

 

Micro, Mild, and Full
Needs for Power Generation
Needs for Electric-Driven Cooling



 

Industrial Sector


 

Another 10 Quads Lost  -

 

~1.8 Quads Recoverable
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$23B @ $70/Barrel



Technical Approach


 
Power Generation in Light-Duty & Heavy-Duty Applications 
Requires TE Materials in the 350 K to 820 K Range
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Various Data Here Come from Past TE Materials Programs
@ NASA-JPL & Office of Naval Research 



Project Objectives


 

Continue Design, Synthesis, & Characterization of n-type, Multiple-Rattler 
In-based Skutterudites Refined in 2008


 

Measure Properties at 300 –

 

820 K



 

Bulk Materials



 

ZT = 1.6 @ 600 K  (Inx

 

Cey

 

Co4

 

Sb12

 

)



 

Design, Synthesize, & Characterize Corresponding p-type, Multiple-Rattler 
Skutterudites in Similar Temperature Regimes



 

Characterize Thermoelectric & Structural Properties 


 

Seebeck Coefficient, Electrical Conductivity, Thermal Conductivity -

 

OSU



 

Elastic modulus, Poisson’s ratio, Coefficient of Thermal Expansion –

 

PNNL



 

Transition the Selected n-type & p-type Skutterudite TE Materials into TE Couples



 

PNNL to Characterize System-Level Benefits of Material Compositions in 
Waste Energy Recovery Applications



 

Demonstrate High-Performance TE Couples for Transition to Waste 
Energy Recovery Applications



Technical Approach


 

Proactive, Systematic Investigation of Dual-

 

& Tri-Rattler Skutterudites


 

Refine n-type Materials, Characterize at Higher Temperatures & Transition

 

to TE Couple


 

Systematically Develop p-type Materials with Performance Similar to n-type Levels



 

TE Property Measurements @ OSU Laboratories


 

Seebeck Coefficient Measurements vs. T


 

Electrical Conductivity Measurements vs. T


 

Thermal Conductivity Measurements vs. T



 

Intend to Engage Third-Party Validation


 

ORNL



 

Structural / Thermal Property Measurements @ PNNL


 

Resonant Ultra Sound Techniques (E, )


 

Up to ~300 °C


 

CTE


 

Up to ~400 °C


 

Mechanical Strength


 

Room Temperature



R2+: Ba, Ce, Sr, Ca, Ag,  Pd,  

R3+: La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, 
Dy, Ho, Er, Tm, Yb, Lu, In, Sc 

Multiple Rattlers in Skutterudites: Rx

 

Ry

 

’Co4

 

Sb12

Co4

 

Sb12

Multiple 
Rattlers

Rx

 

Co4

 

Sb12

 Inx

 

Co4

 

Sb12 Shows High ZT ~1 at 573 K 
 Inx

 

Ln y

 

Co4

 

Sb12 Increases the ZT >1.5 at 573K
 All are n-types; High Performance p-types are Needed

(In0.15R0.10)Co4Sb12

In,Ce (synthetic method 1)

In,Ce (synthetic method 2)

In,Yb

In,Er

In, Nd

In, La

All are n-type

(In0.15R0.10)Co4Sb12(In0.15R0.10)Co4Sb12

In,Ce (synthetic method 1)

In,Ce (synthetic method 2)

In,Yb

In,Er

In, Nd

In, La

All are n-type

 High Performance TE Materials Expected
Bulk-Type Materials for Easier Device Manufacture & Integration
Transition Results to Energy Recovery Projects As Appropriate & Quickly As Possible



Project Accomplishments



Elastic Moduli Estimate by Resonant Ultrasound 
Spectroscopy:  High Temperature Test Chamber

Argon 
gas inlet

Gas preheat

High temperature 
wire for three resistive 
cartridge heaters

Gas diffuser

High temperature 
RUS transducers

Primary 
components 
and fittings 
are stainless 
steel.

Upper fixture 
with fixed 
transducer

Lower 
fixture

Resistance temperature detector 
(RTD) sensor access



Elastic Moduli Estimate by Resonant Ultrasound 
Spectroscopy:  High Temperature Transducers

Vespel ®

 

cylinder (6.6-mm outer diameter)

High temperature coaxial 
cable (not shown)

Silver epoxy
(EPO-TEK®

 

E2116-5)

Inner cavity filled with high temperature epoxy 
(Aremco-Bond 526N-ALOX-BL-A & B)

Stainless steel tube

Transducer 
lead wires

PNNL Fabricated Transducers

30-MHz, lithium niobate crystal (2.0-mm diameter active center)



Resonant Ultrasound Spectroscopy
 PNNL

 Resonant Ultrasound Spectroscopy
 PNNL

Spectrum spanning 180 –
 

1,030 Hz
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Spectrum spanning 180 –
 

1,030 Hz
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 High Electrical Conductivity
 Both n-

 
and p-type Compositions Can Be Made
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Co1-x
 

Rhx
 

Sb3 (without Rattlers): 
High temperature power factor

 Power Factor Temperature Dependency for p-type x= 0.6 sample
 Further Characterizations Such as Thermal  Conductivity Are In Progress
 Higher Power Factor Combinations Being Pursued & Developed 



 

Seeking to Match n-type Performance



Thermoelectric Characterization at OSU
 Electronic Properties

 Thermoelectric Characterization at OSU
 Electronic Properties
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Thermoelectric Characterization at OSU
 Thermal Conductivity

 Thermal Conductivity
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High Temperature Lattice Thermal Conductivity
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Resonant Ultrasound Spectroscopy & TE Properties
 Preliminary Data

 Resonant Ultrasound Spectroscopy
 Preliminary DataIsotropic , Poisson's CTE  [/°C] E, Young's [1011] N/m2 ZT  (@ 600 K)

CoSb3

 

(literature) 0.222005842 1.39553067 0.6

La0.75

 

CoFe3

 

Sb12 
(literature) 0.227717924 1.36522233

CoSb3

 

(PNNL) 0.225592919
12.8x10-6

1.39818091

CoSb3

 

(PNNL) 0.224591022 1.39118439

In0.1

 

Co4

 

Sb12

 

(PNNL) 0.227384707
8.37x10-6

1.39624829

Y0.1

 

In0.1

 

Co4

 

Sb12

 

(PNNL) 0.247137106
9.26x10-6

1.41325577 0.82

18



 

Next TE Materials for Structural Testing  (In Process)
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System-Level Analyses Show OSU/PNNL Skutterudites Potential 
Superiority Compared to Common High-Performance Materials


 

Automotive Exhaust Heat Recovery Applications


 

Direct-Fired APU Applications
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= 873 K
Tamb
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mh

 

= 0.03 kg/s
UAh

 

= 200 W/K

Preferred TE
Design Regime

Assuming p-type TE Materials Show the 
Similar Performance as n-type Materials

TE Material Impacts on System Design



 

Higher  System  
Efficiencies Create:
More Power (for 

Given Heat Input) 
 Smaller Systems
 Lighter Systems



Future Work & Path Forward

 Optimize Synthesis Procedures for n-type (In,R)Co4

 

Sb12

 

Compositions 


 

Good Reproducibility 


 

Fabricating Highly Dense Samples

 Introduce Single & Multiple “Rattlers”

 

(In, Rare Earth) in Co0.6

 

Rh0.4

 

SbO3

For Better p-type High ZT Materials 
 Investigate Other p-type Combinations
 Characterize TE Properties & Validate with Third Party Testing
 Structural Property Measurements



 

Young’s Modulus, E(T)



 

Poisson’s Ratio, (T)


 

CTE(T)


 

Mechanical Strength

 Transition to TE Couples & Measure Performance 



Summary
 Results



 

n-type TE Materials Showing Excellent TE Properties (See Publication)


 

p-type Co1-x

 

Rhx

 

Sb3

 

TE Materials Showing Promise at This Early Date (March 2009)


 

Structural Testing Plans Developed 


 

Preliminary Room Temperature Structural Data Available


 

High-Temperature Structural Test Equipment Fabricated

 Challenges


 

Batch to Batch ZT Reproducibility 


 

Sintering to High Dense Samples 


 

Stability Issues During Thermal Cycling

 Benefits


 

System-Level Analyses Show OSU/PNNL Skutterudites Superiority


 

Higher  Performance Than TAGS / PbTe Combinations & Other Skutterudite Combinations


 

TE Conversion Efficiencies Can Be High


 

9-10% in Automotive Applications in Preferred TE Design Regions


 

11-12%+ in a Direct-Fired APU System


 

Potential Superiority to Other Materials in Automotive TE Systems


 

Bulk TE Materials for Easy Integration into TE Module / System Designs
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Questions & DiscussionQuestions & Discussion

We are What We Repeatedly do.  Excellence, Then, is not an Act, But a Habit.

Aristotle



Advanced Thermoelectric System Design
 Single Material TE Legs

23

 System-Level, Coupled Design Analysis
 Hot Side Heat Exchanger
 TE Device 
 Cold Side Heat Exchanger

 Single TE Material Legs
 Accounts for Hot/Cold Thermal Resistances
 Accounts for Electrical Contact Resistances
 Optimum Heat Exchanger / TE Design

Parameters Determined Simultaneously
 Maximum Efficiency & Maximum Power 

Density Designs Are Possible
 Off-Nominal & Variable Condition

Performance Analysis
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