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Industrialization of Thermoelectrics

What are the metrics used by the decision makers in volume power
generation markets?

Market Primary Metric Secondary Metrics
Transportation $/Watt Mass/Watt, Vol./Watt
Portable Power Mass/Watt, Vol./Watt, $/Watt

(Military) Mass/\Watt-Hr

Portable Power $/Watt Mass/Watt, Vol./\Watt

(Commercial)
Aerospace Mass/Watt, Vol./Watt  $/Watt



Industrialization of Thermoelectrics

Is there overlap that enables high volume industrialization?
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Important Factors for Industrialization

General design approach when considering end
user metrics

Performance Get the material form and scale right

TE
Materials
Costs

Choose your material systems carefully
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General design approach (Undesirable Approach)

Innovation Novel Novel Manufacturing
Material Process
Make a device with it Module/Syst
em
Fabrication

Solution
Find out who may want to buy it Looking for a

Problem
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General design approach (TEG for Auto Application)

High Level Customer Requirements $/Watt ] [ Vol./Watt

/NN
s

[ Watt ] [ Vol. | [ Back Pressure ][ Reliability, etc. ]

J

Platform Definition allows Specific
Targets to be Defined

A Max Allowable / T . T
_ Back Back Pressure h-in

Exhaust Side and Coolant Exhaust TEG Coolant Loop
Side Exchanger Modeling Pressure Stream Array
*Performance characterized
by many possible geometric
parameters, materials, and A >
constructions Exh Coolant
Back Pressure, Rth, and $ EX ﬁUSt Exchanger
are key to the model R xchanger
*Without $ as a consideration, th
optimum design typically
seeks min Rth and at Max >
Back Pressure A

$

Th-out Tc-out

Geometric Parameter
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General design approach (TEG for Auto Application)

High Level Customer Requirements

Platform Definition allows Specific
Targets to be Defined

Exchanger Modeling

TEG Array Design
Optimization

*Maximizing DT and efficiency
is undesirable (N0 Qyermar)
*Maximizing heat extraction
from exhaust stream is
undesirable (low efficiency)
Low impedance TEG arrays
(thin films, nanowire arrays,
etc.) generally poor W
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Exchanger Models, Including $ ]
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AT
A >
Efficie V
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Weanchermal /\
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Element Array Thermal Impedance (~L)

Th-in TC-in
Exhaust TEG Coolant Loop
Stream Array
Exhaust
Exchanger Coolant
Q Exchanger
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General design approach (TEG for Auto Application)

High Level Customer Requirements $/Watt ] [ Vol./Watt

- J

/NN
s

] [ Watt ] [ Vol. | [ Back Pressure ][ Reliability, etc. ]

J

Platform Definition allows Specific
Targets to be Defined

~
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, \ Vi Vi

. ( v V vV vV
Exchanger Modeling Exchanger Models, Including $ ]
TEG Array Design Optimization Material T.
*Thinner Array = lower $/W Target Power System A Th in cin
*Low Cost Material = lower $/W \A Exhaust TEG Coolant Loop
*A minimum acceptable ZT can |~ D\ . Stream Array
be determined W, /M

_ System
*Meets the Design Target >  Exhaust
Power, and potentially at a $/W A Exchanger Coolant
that enables wide market o erial Q Exchanger
adoption $/W._ (Including ateria
Exce;hangers, System A
Assy)
Material
Systegn B <>
L
Element Array Thermal Impedance (~L) T T
h-out c-out
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General design approach (TEG for Auto Application)

High Level Customer Requirements

Platform Definition allows Specific
Targets to be Defined

Exchanger Modeling

TEG Array Design Optimization

$/Watt ][ Vol./Watt

J
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} [ Watt } [ Vol. | [ Back Pressure ][ Reliability, etc. ]

J

| / /
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Exchanger Models, Including $ ]

Optimize for $/W, under constraints ]

When using end-user metrics for Design Optimization:

*Allows one to specify a minimum acceptable ZT for material system
*Best design may not be the highest ZT material system

*Best design may not be the most efficient heat exchange design
*Best material quite likely not a thin film
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Get the material form and scale right (Cooling)

A TE Cooler is only as good as its heat sink

Thermoelectric System Performance Depends Principally on:
1. The Ratio of the element array conductance to the entry and exit thermal conductance
2.ZT

Secondarily, it depends on thermal bypass, interface resistances, compatibility factor,
etc.

K

n type = T=T ¢ T, y

..‘_
Element Model - oM\e <«q,
o | — ! Performance= f(ZT)
Kh K Kc
Ta + Th Tc Ts
System Model iy E WM.«- q,
..‘_
P type -—

9 9 Performance= f(KIK_, K/K,, ZT)
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Get the material form and scale right

Cooling, R, dominated by source and sink Cooling, R, dominated by elements

AT across source
and sink dominates

Good AT, ,,, poor

max

v a

Tttt
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l_h Low Dimensional
@ Materials based Coolers
2 g
@ 0.85 4 » -
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Bulk Materials L
% 0.8 = 3 lofe,1436 based Coolers //
— O Yim, 1966

0.75 + - e
E Q Venkatasubramanian, 2001 *q‘h
W < Harman, 2002 i
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5 A Bottner, 2004 f .
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Nondimensional Figure of Merit, ZT,, []

Performance
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Doing the Math
System Model: Find Governing Equations K, K K

Ta * T|-| ¢ Tr, * TE
Energy balanceatT and T_ -q
q, q.

Nondimensionalize

0.=TIT,

Temperature 0.=T.]IT,
0,=T,IT,

k,=K_,IK

Thermal Conductance KﬁZKh/K

< > Electrical Current Y= |“” AE‘SITEI
Performance
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Non-dimensionalized Cooling Performance

* Performance # f(ZT)
» Performance = f(ZT, X, Kh)

Junction Temperatures
0 )_(xh+1—y)(f/zzTawces)wz/z,ZTaJrxh
YT (k,+1—y)(k,+1+y)-1
(k +1+y)(y*122T,+k,)+y’*I2ZT,+k 6,
(k,+1—y)(k +1+y)—1

ﬂh()’):

Minimum Cold Side Temperature

=0 0 =0 0 _:(Kh+2—yn]y§/2ZTa+Kh
©m (ky+1=yo) (yo+1)—1

Maximum Cooling Power

! KT ,=(0,-6, , )k

c




Width, b

'
'

gth, L

F

kﬂq'

Substrate Thickness, t

I__Elﬂsint Length,
"
A

/'/' /"/' Cooling Fluid Mass
Flow Rate, m

4 mm? Cooler, Telecom
Laser, Typical Cooling

S
Performance
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10! at ~ 20-200 pm
Element
Model
£ 1
s System
g Model
o
210" 4
é ] 'Nano-micro'
[
107

puts element length L.

~N
Performance for

many applications

N
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Material Choice for Performance

All ZTs are not created equal

Must choose material system capable of being formed at appropriate length scales (thin
films face challenges)

17
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Materials Costs

Synthesis
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Materials Costs

Relative Raw Material Costs (n-BiTe = 1.0)

10.00
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Materials Costs

Impact of Thermoelectric Device

. 100.00%
Ramp on Today’s Production 10.00%
Levels 1.00%
» Assume 500K Unit Production of 0.10%
Automotive TEG Systems 0.01%
» ~130cc of TE Material per Vehicle
N-BiTe
. 100.00% 100.00%
Increase in F
Production 1‘:'$ | 10.00%
Required to Meet 0.10% 1 I ;‘:‘-E
New Demand p— 0:01%
Bi Te Se
P-BiSbTe
100.00% 100.00%
10.00% 10.00%;
1.00% I 1.00%
0.10% 0.10%
0.01% - 0.01%
Bi Te Sh

aterials
Synthesis
Costs

Didymium -

1 Skutterudite
o I 0

Nd Pr

Ge Te

Fe Ni Sb

P-PbTe

Pb Te Ma

TAGS

Sb

Ag

100.00%
10.00%
1.00%
0.10%
0.01%

100.00%
10.00%
1.00%
0.10%
0.01%

100.00%
10.00%
1.00%
0.10%
0.01%

—u.

S Romny

CoSb
Skutterudite
Co sb In
Mg
Silicide
Mg Si Ag
CeFeCoSb |

1 Scutterudite
Ce Fe Co 5Sh
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Performance per Cost

Romny’s current NSF Funded work | Romny’s N-type

on Skutterudites <F CoSb Skutterudite
- High Performance per Price b
* Integrated into Novel Module MFG z. b

process et

S K 8F
@ -' l"? ) _ P _ N-PbTe
b N-BiTe 00—

Focus of Current DOE/NSF Funded T

effort with VT (Huxtable, et. al.) Temperature [C]

« Mg-Si based alloys

o VT
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Industrialization of Thermoelectrics

Is there overlap that enables high volume industrialization?
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