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• Project start: Feb. 2012 
• Project end: Sept. 2015 
• ~30 Percent complete 

• Barriers addressed 
– Lightweight Materials Barrier H: 

Maintenance, Repair, and Recycling 
– Lightweight Materials Barrier C: 

Performance (corrosion resistance) 
– 50% vehicle body/chasis weight reduction 

target will require low-cost, corrosion-
resistant Mg alloys 
 

• Total project funding 
– $1350k DOE share 
– $210k In-Kind (MENA) 

• $450k received in FY12 
• $300k in FY13 

Timeline 

Budget 

Barriers 

• Magnesium Elektron North 
America (MENA)  

• Project Lead: Oak Ridge National 
Lab  

Partners 

Overview: New Project 
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• Mg and carbon fiber have the highest potential to achieve 
targeted 50% weight reduction in vehicle body and chassis 
 

• Mg alloys need to enable recycling, low cost joining, and 
corrosion resistance for successful implementation 
– Must achieve this with reduction or elimination of rare earth additions 

 

• Film formation and corrosion of Mg is highly complex.  
– Improved scientific understanding needed to provide the basis to develop 

more corrosion-resistant Mg alloys and coatings 
– Focus on how alloy additions to Mg effect structure, chemistry and 

protectiveness of film formation (bare alloys and converison coatings) 

Relevance: Develop Scientific Foundation for 
Mg Alloys w/ Improved Corrosion Resistance 



• Film formation on bare Mg alloys and conversion 
coatings are key to corrosion resistance 
 

• Near-ambient films on Mg relatively thick 
– Tens of nanometers to microns as opposed to thin (< 10nm) films 

formed on stainless steels, Al, etc. 
– Shares characteristics with films more often observed for heat-

resistant alloys in high-temperature oxidation and corrosion 
 

• Apply new characterization techniques from high-
temperature oxidation to ambient films on Mg 
– Cross-section transmission electron microscopy  
– Tracer studies with tagged O and H species 
– Small angle neutron scattering 
– Combine with surface chemistry + electrochemical techniques 
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Strategy: New Advanced Characterization 
 Techniques to Elucidate Film Formation 



Strategy: Focus on how  alloy chemistry and 
exposure affect surface film structure, chemistry, 

and protectiveness 

• Start with AZ31B and E717: Represents two major Mg 
alloy classes (both near-single phase) 
– AZ31B: Mg-(2.5-3.5)Al-(0.7-1.3)Zn-(0.2-1)Mn wt.% 
– Elektron 717: ZEK 100 type with Mg-(0.7-1.3)Zn + Nd, Zr wt.% 
– CP + UHP Mg: three 9’s and six 9’s purity for control purposes 
– Conversion coated AZ31B and Elektron 717 (selected by MENA) 
 

• Aqueous Environments ± Salt 
– Immersion in ambient distilled ionized (DI) water 4 to 48 h 
– Immersion in ambient distilled ionized (DI) water + salt 4 to 48 h 
– Electrochemical studies in DI water saturated with Mg(OH)2 ± salt 
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FY 2012:  Sample technique development for focused ion beam (FiB) cross-
section transmission electron microscopy (TEM) of Mg surface films. 
(September 2012). MET 
 
FY 2013:  Determine feasibility to perform isotopic tracer studies (18O, 2H) to 
understand growth mechanism of  surface films formed on Mg alloys.  Go/No 
go decision for this experimental approach. (August 31, 2013) On-Track 
 
FY 2013: Submit at least one journal article on magnesium alloy film growth 
based on down selected advanced characterization technique findings 
(September 30, 2013) On-Track 
 
FY 2014/2015 Milestone metrics involve additional journal article submissions 
per DOE direction to focus on gaining improved understanding of Mg corrosion 
and widely disseminating findings 

Project FY12/FY13 Milestones Devoted to  
Characterization Technique Development 
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• Lower cathodic currents for UHP Mg due to high purity/absence of  second 
  phase precipitates  in matrix 
 

•Lower alloy content in E717 yields behavior closer to UHP Mg than AZ31B 
 

•Increased currents/decreased corrosion resistance with salt 

 Corrosion Overview in Mg(OH)2 Saturated 
Water With and Without NaCl 
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Similar Low Mass Gain for E717 and AZ31B on 
Immersion in Room-Temperature DI Water  

• Highest mass gain for UHP Mg 
 

• Uptick in mass gain rate for all 3 alloys between 24 and 48 h immersion 
 

• TEM cross-sections performed at 4, 24, and 48 h water immersion to 
understand film growth trends (future work repeat with water + NaCl) 



Preparation Techniques Successfully 
Developed for Cross-Section TEM  

 Preparation Technique via Focused Ion Beam Milling (FiB) 

Surface 

W+C-Layer ~15µm 

Under Cut 

- Deposited W+C overlayer to protect film integrity during milling 
 
- Can target specific local regions of interest for analysis 

 
- Cross-section region lifted out and available for advanced characterization 

Oxide 

Metal 

C-layer 
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AZ31B 

MgO 24h 

Metal 

UHP Mg 
Irregular, Thick Films on UHP Mg, E717 in Water 

MgO 
4h 

Metal 

C-layer 

MgO 

MgO+Mg(OH)2 
24h 

Metal 

C-layer 

MgO 

Metal 

48h 

Mg(OH)2 

C-layer 

MgO 4h 

Metal 

MgO 48h 

Metal 

MgO 

24h 

Metal 

Mg(OH)2 

MgO 
4h 

Metal 

E717 

*MgO regions may also have 
 hydroxide mixture present 

48h 

MgO 

Metal 

Mg(OH)2 
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XPS sputtering profiles 

• Film is irregular thickness, film/metal interface 
    in XPS + SIMS not sharp 
• XPS shows some hydroxide near surface and 

small carbonate signal  
• SIMS shows H in MgO regions and H 

penetration into metal, some O into metal? 

Exposed 
Surface 

SIMS sputtering profiles 

Exposed 
Surface 

24h Water UHP Mg: XPS+SIMS+TEM Suggests  
Film is Primarily MgO+H with Mg(OH)2 at Surface 

Film Metal 

Fi
lm

 

Metal 

MgO 

MgO+Mg(OH)2 

Metal 

C-layer 
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XPS sputtering profiles SIMS sputtering profiles 

Exposed 
Surface 

Exposed 
Surface 

Film Metal 

Fi
lm

 

Metal 

24h Water E717: XPS+SIMS+TEM Suggests  
Film is Primarily MgO+H with Mg(OH)2 at Surface 

MgO 

Metal 

Mg(OH)2 

• Film similar (thinner) to UHP Mg: irregular 
thickness, film/metal interface not sharp 

• XPS shows some hydroxide near surface 
and small carbonate signal  

• SIMS shows H in MgO regions and 
extensive H penetration into metal, some O 
into metal? 
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MgO+Mg(OH)2 

AZ31B 

XPS sputtering profiles SIMS sputtering profiles 

Exposed 
Surface 

Exposed 
Surface 

C-layer 

Film Metal 

Fi
lm

 

Metal 

24h Water AZ31B: XPS+SIMS+TEM Suggests  
Thin MgO + Mg(OH)2 Film 

MgO 

Metal 

• Film far thinner than on UHP Mg and E717 
• XPS shows some hydroxide near surface, 

small carbonate signal, Al in inner film  
• SIMS shows H/O track together (mixed oxide 
    + hydroxide?), H,O penetration into metal 



O Zn Mg Al 

O Zn Mg Al 
X-ray Map 2 

X-ray Map 1 

• Zn enrichment at metal/film interface  
• Al present in the inner film (source of thinner film?) 
• Zn precipitates present in the film 
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High Angle Annular Dark Field (HAADF) Image 

AZ31B 

24h Water AZ31B: Thin Film Enriched  
With Al and Zn Near Metal/Film Interface 

Pores? 
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O 

Zn 

Mg 

Nd Zr 

ZrZn-rich precipitate 

E717 

Scale 

• Zn enrichment at metal/film interface (similar to AZ31B)  
 

• Nd enrichment at metal/film interface  
 

• ZnZr-rich precipitates: investigate with probe corrected microscope 
 

• Beam damage artifact induced porosity: small angle neutron scattering to 
determine degree of actual nanoporosity in film 

HAADF Image 

24h Water E717: Metal/Film Interface Enriched with 
Nd and Zn 

Beam damage 
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E717 

MgO 

E717 

Zn2Zr3 

48h Water E717: Zn2Zr3 Nano Precipitate in Alloy 
HAADF Image 

BF STEM 
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Zn Zr 

HAADF BF STEM 

MgO 

Oxide 
(MgO) 

C-layer 

E717 

MgO 

48h Water E717: Zn2Zr3 Nano Precipitate 
Incorporated into Inward Growing Film  
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• Internal oxidation of Mg (new, real?) 
 

• Zn enrichment at metal/film interface 
 

• Al enrichment in inner MgO region 
 

• Thicker film and more hydroxide than  
 24 h water film  

Prep artifact 

Preliminary TEM Film Section and EDS Maps 
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MgO 

MgO+Mg(OH)2 

Internal oxidation O 

Zn 

Mg 

Al 

Zn enrichment 

24h, 5 Wt.% NaCl in Water AZ31B: Thick Film with 
Possible Internal Oxidation at Metal/Film Interface   
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Collaboration and Coordination With other 
Institutions  

• Bruce Davis of Magnesium Elektron North America  
     -In-kind cost share partner for manufacture of model and commercial 

alloys, conversion coatings ($210k planned total cost share) 
     -Ongoing role with experimental planning and interpretation 
     -Partner in joint user proposal for neutron scattering studies (details follow)  
       
 

• Mostafa Fayek, Canada Research Chair in Isotope & 
Environmental Geochemistry 

      -SIMS analysis for tracer studies of Mg film growth mechanism 
        (unique capabilities and expertise from geochemical systems) 
      -Longtime collaborator with ORNL geochemistry and materials science   
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Future  Work 

• Baseline water film formation for UHP Mg, E717, AZ31B 
established with TEM and XPS. Remainder of FY 13: 
     -Water film growth SIMS tracer study in progress w/ 1H2

18O and 2H2
16O  

      - MENA + ORNL High Flux Isotope Reactor user time in May for 
        small angle neutron scattering to assess film nanoporosity  
 i) bare E717 and AZ31B 
 ii) conversion coated E717 and AZ31B: alodine 5200 (epoxy base); 
 Surtec 650 and Metalast TCP-HF (trivalent Cr-salt base) 
 iii) as received and after 24 h water immersion  
 
• Test matrix will expand to include model Mg+ X alloys to better 
 understand differing behavior of E717 and AZ31B 
 
• FY14 work will move to include film formation in water + salt 
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Summary: Planned Milestone Journal 
Publications On-Track 

• Preparation techniques established for cross-section TEM 
    of surface films formed on Mg 
 

• Baseline studies of film formation in water for UHP Mg, E717, 
and AZ31B using TEM + XPS + SIMS nearly completed  

     -Films consisted primarily of H-enriched MgO, with surface regions also 
       containing Mg(OH)2 and carbonate  

 

• Films significantly affected by alloying and exposure times 
     -AZ31B (thinnest): Al enriched at inner MgO, Zn at metal/film interface 
      -E717: Zn and Nd at metal/film interface. Inward growth incorporates 
       nano Zn2Zr3 precipitates from alloy into film 
 

• SIMS data suggest penetration of H and O into metal under 
film formed in water 

       -extensive H penetration in E717 (related to Zr, Nd addition?) 
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Technical Back-Up Slides 
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Collaboration and Coordination  
• Bruce Davis of Magnesium Elektron North America  
     -In-kind cost share for model and commercial alloys, conversion coatings 
     -Ongoing role with experimental planning and interpretation 
 

• Mostafa Fayek, Canada Research Chair in Isotope & 
Environmental Geochemistry: SIMS + Isotopic tracers 

 

• Multi-Disciplinary ORNL Team (Brady + Unocic Co-PI’s) 
     -M.P. Brady/J.R. Keiser: metallurgy + high-temperature oxidation  
      -K.A. Unocic: microscopy and corrosion background 
      -H. Elsentriecy: post-doc fellow, electrochemistry and Mg coatings 
      -H.M. Meyer III: surface chemist 
      -L. Anovitz: geochemistry (includes Mg-O-H systems)  
      -G. Rother: geochemistry and neutron scattering 
      -G. Muralidhardan: metallurgy, processing, and neutron scattering 
      -G. Song: New hire at ORNL, Mg corrosion and electrochemistry 
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Change in OCP due to Presence of 2nd Phases 

UHP Mg CP Mg AZ31B E717 

Fe-rich Al,Mn-rich Nd,Zn-rich 

• Current density instead of OCP - reliable criteria parameter 
• No significant difference in corrosion behavior in Mg(OH)2 exposure 
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Tracer Film Growth: 4 h immersion in 18O water + 20 h in  2H water (D2O) 

• Data suggests inward growth of surface film 
• H penetrates far greater than O - suggests H in metal under film 
• Extensive H penetration in Elek 717 - possibly RE effects (Nd, Zr)? 
 

Preliminary Tracer Data Suggests Inward 
Film Growth and Significant H Penetration 
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Surface SEM Analysis of Films Formed in 
Water Immersion 

Surface cracking observed after 24 to 48 h of water immersion 
 i) volume increase from MgO  Mg(OH)2? 
 ii) volume decrease from Mg MgO? 
 iii) dehydration? (cracks also observed optically so not caused by SEM vacuum) 
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