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Advanced Thermoelectric System Design

Single & Segmented Material TE Legs

Thermoelectric Heating/Cooling

Thermoelectric Power Generation
Low-Temperature Systems

High-Temperature Systems
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TE Power Generation
Heat Exchanger / TE Device Integration Requirements

» Regions of Higher Specific Power Also Associated with Higher Heat Flux
Regions
» Hot Side Heat Exchanger Dictates:
» TE Specific Power
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TE Cooling
Heat Exchanger / TE Device Integration Requirements

» Typical COP — Cooling Capacity — Power / Mass Relationship Shown

» Distributed TE Cooling Systems
0

» Create Lower Heat Flows per
Unit
» Higher COP’s
» Lower Power / Mass
» Generally Right Directions for
Automotive Distributed Cooling

Maximum COP
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* Poudel, B., Hao, Q.H., Ma, Y., Lan, Y., Minnich, A. Yu, B.,
Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J.,
Dresselhaus, M.S., Chen, G., Ren, Z., 2008, “High-
Thermoelectric Performance of Nanostructured Bismuth
Antimony Telluride Bulk Alloys,” Sciencexpress,

10.1126, science.1156446.
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TE Cooling
Heat Exchanger / TE Device Integration Requirements

» Distributed TE Cooling Systems Generally Move Into Regions of:
» Higher COP’s
» Higher Specific Cooling Capacity (Compact, Lightweight Systems)

» Higher Heat Fluxes (Higher H%%}l[amﬁﬁmm—*ﬁﬁ@f
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PNNL Developing High-Performance
Microtechnology Heat Transfer Technologies

» TE Power Generation From TQG Exhaust Energy Recovery
» Hot-Side Heat Exchanger Designs Being Developed & Refined
» CFD Analyses & Experimental Testing Helping to Refine Designs
» Design Performance Goals:

> High Thermal Transfqr_fpjy S Cond !
Mixing &t
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» Low Pressure Drop (<
» Heat Flux vs. Pressure

» Different Materials Can
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Co-Functional Power / Cooling Systems

» Co-Functional Integration of 3 Power & Cooling Technologies
» Organic Rankine Cycle Based Cooling
» Thermoelectric Power Generation
» Micro/Nano Heat Transfer Technologies (Microchannel Heat Exchangers)

» System Designed, Fabricated & Tested at PNNL MBI

» TE Topping Cycle Hot Exhaust
Stream
» Step-Down (Lower) Input Temperatures to ORC I
=
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Cooling Space
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CFPC - Fabrication & Test

First-in-Class, Pioneering System TEG Power System

» TEG Power System Uses
MicroChannel Heat Exchangers

> Stainless Steel Air HX On Hot-Side
> Aluminum R245fa HX on Cold-Side =————
> High-Temperature Bi,Te; Modules _=Q
> First-Ever 320° C Bi,Te, Modules EN
» System Size
> Dimensions: 30" X 30" X 19”
> Weight: ~100 kgs
» System Fabrication Completed

A\

» System Testing Completed

> Exhaust Heat Simulated with
Electrical Heater / Blower System

Expander

> Stable System Operation
Many Performance Metrics Satisfied
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MicroTechnology in Distributed TE HVAC Systems

R T ‘«‘;.;
» DOE Project in Advanced TE HVAC git“‘i
Systems for Automobiles 4 ey S
» Zonal Climate Control for Thermal Comfort

» Compact Microtechnology Heat Exchangers
> Reduce Weight & Volume
> Low Cost Manufacturing

» Coupled with Compact TE HVAC Systems
» Wicking Systems for Water Management

» Leveraging Nano-Scale Coating Technology

» Significant Microtechnology Cost Modeling
» Cost Sensitivities ldentified
» Low-Cost Manufacturing Avenues Being Developed
» Sensitivities to Production Volumes
» Material and Process Cost Drivers

e ~__CostModeling Approach sz
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PNNL Nano-Scale Coatings Impact Surface
Hydrophobicity and Surface Boiling Heat Transfer
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PNNL Developing High-Performance

Microtechnology Heat Transfer Technologies
» TE Cooling / Heating

» Automotive Distributed HVAC Systems

» A Number of Microtechnology Designs Are Being Investigated

» An Example of One Such Design Is Presented Here

» Heat Transfer vs. Pressure Drop Characteristics Quantified
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Effectiveness

Effect of Channel Aspect Ratio on Effectiveness
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Heat Transfer Density(Q/Vol,,.i.), KW/Lt.

Effect of Channel Aspect Ratio on Flux Density
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Process-Based Microtechnology Cost Modeling

» Microtechnology Manufacturing Cost is Key to Automotive Applications
» Process-Based Cost Modeling

» Cost Sensitivities Identified
» Low-Cost Manufacturing Avenues Being Developed
» Sensitivities to Production Volumes

» Material and Process Cost Drivers

» System Performance Modeling Integrated with Cost Modeling to Identify
Low-Cost, Manufacturable Microtechnology Designs

» Cost Modeling Incorporates Critical Process & Cost Elements

Y

Prioritizes R&D Investment Plans & Enables Business Decisions

» Compared 3 Process Approaches for Microtechnology Heat Exchanger
Design Discussed Above

» Cost Modeling for High-Temperature Exhaust Recovery Applications
» Cost Modeling for Low-Temperature Advanced Cooling-Applications.
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Process Based Cost Modeling

Bottom-Up Approach to Estimating Cost of Goods Sold (COGS)
Based on Operation of Virtual Manufacturing Line — Breaks Down Cost by Unit Process

Model Inputs Model Outputs

Process Flow

Cost of Goods Sold (COGS
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Unit Process 2 ('—“F-i;e:;::;s_t;“ 2~ Variable Costs >
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Integrated HTX COGS Estimation and Pareto : Process "A"
8 HTX per Vehicle / Aluminum HTX /2 cm x 4 cm x 8 cm HTX Dimensions
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Integrated HTX COGS Estimation and Pareto : Process "B"
8 HTX per Vehicle / Aluminum HTX /2 cm x 4 cm x 8 cm HTX Dimensions
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o Pacific Northwest

Microproducts NATIONAL LABORATORY

Breakthrough
lnstituteg Proudly Operated by Battelle Since 1965




Integrated HTX COGS Estimation and Pareto : Process "C"
8 HTX per Vehicle / Copper HTX /2 cm x 4 cm x 8 cm HTX Dimensions
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Summary - Process Comparisons

Aluminum Copper
Annual Volume Process A Process B Process C
Vehicles | HTX Units S/Unit | Capital Equipment (Sk) S/Unit | Capital Equipment (Sk) S/Unit | Capital Equipment (Sk)
1,000 8,000 $153.90 $1,705 $40.09 $1,400 $46.48 $1,400
10,000 80,000 $30.85 S5,455 S7.44 $1,400 $13.87 $1,400
100,000 800,000 $20.54 $43,830 $4.55 $2,550 $10.91 $2,050
1,000,000 | 8,000,000 $19.55 $459,300 $4.19 $17,750 $10.61 $14,750
2cm
L
] 4 cm
Bl > 1.25 mm
8 cm
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Summary

» Microtechnology Thermal Systems Required to Enable Compact, Light weight
TE Systems

» TE Power Generation
» TE Cooling / Heating
» Microtechnology Thermal Systems Successfully Integrating into TE Systems

» Process-Based Cost Modeling is Critical to Developing Low Cost
Manufacturing Pathways, Processes, and Materials

» Cost Modeling Incorporates Critical Process & Cost Elements
Cost Sensitivities Identified

Y

Low-Cost Manufacturing Avenues Being Developed

Y

» Sensitivities to Production Volumes
» Material and Process Cost Drivers ldentified

» System Performance Modeling Integrated with Cost Modeling to Identify Low-
Cost, Manufacturable Microtechnology Designs

itizes R&D Investment Plans-& Enables Business Decisions %
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We are What We Repeatedly do. Excellence, Then, is not an Act, But a Habit.

Aristotle

Questions & Discussion

- v 31/ V/: 3 Y %
' Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965



