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Overview

• Low rate capabilities
• High cost
• Poor Stability

Barriers

• Gerbrand Ceder (MIT) (co-PI)

• Collaborators (BATT):
• Prof. M.S. Whittingham, Binghamton
• Dr. M. M. Thackeray, ANL
• Drs. T. Richardson, J. Cabana, LBNL

• Profs. J. –M. Tarascon, C. Masquelier, 
Amiens

Partners
Objectives

• Determine the effect of structure on 
stability and rate capability of cathodes 
and anodes.  

• Explore relationship between 
electrochemistry and particle size and 
shape.  

• Understand and predict reactivity of 
anode and cathode electrode materials 
with electrolytes.  

• Develop new materials 

• Start date:  May 2006
• End date:   February 2010

Timeline

• Total project funding: – $1M
• Funding in FY08: – $270K
• Funding in FY09:  – $385K

Budget
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Milestones
• (a) November 1, 2008:  Demonstrate the application of the in situ NMR technology 

to investigate nanoparticle deintercalation/intercalation methods.  COMPLETE
• Complete studies of structural changes that occur at high voltages in nickel and 

manganese containing layered materials. COMPLETE
• (b) May 1 2009: Computational results on lithiation of nanomaterials; Produce initial 

results on broad search for new materials.  
• Complete NMR/electrochemical studies of coatings on lithium nickel manganese 

oxides materials.  In progress*
• Complete NMR and pair distribution function (PDF) studies study of silicon, during 

the 1st cycle; initiate structural and reactivity studies on the effect of cycling Si to 
different states of (dis)charge.  COMPLETE

• Complete investigation of mechanisms for phase transformations in LiMPO4 as a 
function of shape for M = Fe.  Initiate studies for (M = Mn, Ni, Co and solid solutions 
of Fe and these elements).  In progress*

*As of March 20, 2009Approach
• Use solid state NMR and diffraction/TEM to characterize local and long range

structure as a function of particle size, sample preparation method, state of
charge and number of charge cycles (cathodes).

• Use electrochemistry to correlate particle size with rate performance.
• Continue to develop the use of in-situ NMR methods to identify structural

changes and reactivity in oxides and intermetallics.
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Technical
Accomplishments/Progress/Results

1.Development and application of in situ 
NMR methodology: Application to 
Si – potential replacement for 
graphite (10 x larger volumetric 
and gravimetric capacity)

2.Size effects in intercalation chemistry –
rate, reactivity and dislocation 
investigation 

3.Structures of coatings: effect of coating 
method on pristine materials: 
e.g., AlF3 “coating”*: Significant 
effects on bulk structure due to 
coating method

4.2-phase reactions:  Effect of doping in 
phosphates.  NMR/Calcs-> 
structure 

5.New electrode chemistries: Conversion 
reactions, organics, MOFS etc.

6.BATT collaborations

Li(OMn5Ni)

Al(NO3)3(aq)  
&  NH4F (aq)

Heat at 
400 °C

*  K. Amine, 
Electrochem. Commun.
8 (2006) 821



In-situ studies of cycling: Diffraction
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What are the structures of the different 
lithiated silicides formed on cycling?

Obravac and Chistensen, ESSL, 2004
Hatchard and Dahn, JES, 2004

>50 meV
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Ex-Situ NMR: Crystalline 
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X-ray Pair Distribution Function Analysis of 
Model Compounds

Model Compound X-ray PDF 1-10 A. (Q range ~ 22)
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PDF analysis
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Amorphous Si formed on 
charge

C
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NMR 
Spectrometer: 
Transmitter/

Receiver

External 
Battery cycler
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Electrochemistry

NMR spectra

•On deep discharge, a new Li signal is observed due to the metastable phase Li15+δSi4
(blue ellipse). 

Plastic 
battery

Following the Li ions in real time, in a working 
lithium ion battery

NMR spectrometer working in 
synchrony with the battery cycler.  

Li NMR spectra and electrochemistry for Si

Plastic bag:  Si + C (1:1) + PVDF; C/75

LixSi + electrolyte

(short pulse delay - suppress electrolyte peak)
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The New Environment Disappears V. 
Rapidly on Charge

Li15Si4 still seen by XRD

How can we rationalize the 
difference between in- and 
ex-situ results and with 
model compounds?

-0.16 Li/Si



Li15Si4 does not appear to be a line 
phase – can tolerate more Li 

•7Li peak of Li15Si4 shifts from 6 to 2ppm at full discharge – capacity not just 
due to rxn with C

•Li15Si4 (Li3.75
3.75+ Si3.75-) is an electron deficient phase – different from all other 

LixSi phases which are “electron excess” (e.g. Li21Si5 Li:Si ratio greater than 4)

•Li14MgSi4 exists, which is a perfect Zintl phase 



Following the self-discharge process in 
real time with 7Li NMR 

• -10 ppm peak due to Li15+δSi4
disappears in about 6 hours, in 
absence of a binder

Li15+δSi4 -> Li15Si4 +  Li+ + e-

Accompanied by reduction of organics in electrolyte
(carbonates (e.g. DMC/EC)))

Oxidation of 
Li15Si4+δ

Li

e-
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The –ve (shielded Li) environment 
can be seen in ex-situ studies of 
cells are shorted, washed and 

NMR run asap



The Li non-stoichiometry can be 
estimated by electrochemistry…

2nd DISCHARGE 
AFTER REST

30 20 10 0 -10 -20 -30
PPM

Relaxed

Relaxed & 
Discharged

+0.11/Li

“Li15Si4” still visible

“Li15+δ Si4” δ = 0.4

A similar Li content is obtained from the charge curve



Analysis of peak intensities in insitu NMR: 
LixSi is reactive, even at higher voltages

Intensity Shifts

 (a) (b)
charge

LixSi (isolated Si) 
+ SEI



Use of CMC binder inhibits self discharge



Conversion Reactions
• Utilize multiple electron processes => can be very high capacity systems
• Optimization requires control of diffusion processes at atomic level
• Difficult to characterize because a series of nanostructure/poorly crystalline 

phases are formed.  

APPROACH:  Li, F, (Cu), NMR and PDF studies of structure
Calculations to identify metastable phases and possible reaction 
pathways

SYSTEMS:  Fe fluorides (cheap), Copper systems (CuF2, CuO, CuS) – systematic 
understanding of mechanism

E.g.,  CuF2 + 2Li -> 2LiF + Cu

FeF3 + 3Li -> 3LiF + Fe



CuF2: Even a simple reaction 
follows a complex mechanism

CuF2 XRD pattern 
disappears by Li = 1.0

Intensity of Cu 
reflections increases 

but particle size 
decreases

LiF grows steadily, SEI 
seen for Li >1.0

19F NMR



Sizes of particles depend on diffusivity in 
different components

Cu NMR – only large Cu 
particles are observed

Li + CuS LixCuS

LiCuS + Li Li2S + Cu



Depending on 
diffusivity, 

reactions can 
occur at either 2 
or 3 interfaces 
leading to very 

different 
nanostructures 



FeF3: Metastable phases, Phase 
Transformations

ReO3 -> Rutile (on charge)*

*G. Badway et al. J. Electrochem. Soc. 2003, 150, A1209

Trirutile: LiFe2F3: Stable intermediate
From DFT Calcs

Doe and Ceder, Chem Mat 08.  

Li0.5FeF3

Li0.5-xFe1+yF3

Li NMR: Intercalation phases



FeF3: Path followed on discharge is not the 
same as on charge - NMR; PDF

PDF – evidence for Rutile Formation

Rutile

Short Fe-Fe
contacts



Size Effects on Cycling: Layered Phases
• Synthesis of different nano-

particle morphologies with range 
of sizes

• Investigation of cycling with in and 
ex-situ XRD, NMR and TEM
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Combining Theory & NMR to Explore Mg-Doping in LiMnPO4
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magnetism is important for mixing…

• Solid–state hybrid DFT calculations.

• Weak driving force for mixing: synthesis
at approx. 500K, applications around RT.

• Theoretical cell parameters track
experimental values.

• Can solid–state calculations add to our
understanding of the NMR spectra?

Rietveld refinements: Chen et al, Solid State 
Ionics 178, 1676 (2008)

With M. S. Whittingham, N. Chernova 



•An approach combining solid–state theory & NMR highlights the local magnetic 
site coordination of the Li ions. Similar techniques are applied to 31P spectra.
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Apply to study Li0.6FePO4
phases (Richardson, Cabana)
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Summary
• Developed unique in situ NMR capability in BATT program. Utilized this to:

– Follow structural changes on lithiating Si
– Identify self-discharge reactions at low voltages in Si
– Identify self-discharge reactions at high voltages in nanoparticles of 

layered materials
• Conversion reactions.

– Utilize a combination of NMR and diffraction to determine reaction 
mechanism and identify structures in nanocomposites

• Size effects on cycling
– Examine size effects on structural transformations.  Identify 

dislocations that form at high voltages
• Coating mechanisms

– Identify structural changes that occur during the coating process
• Develop theoretical approaches to calculate NMR spectra – use to 

investigate local structure in phosphates
• Extensions to new materials

– Use NMR methods to determine structure and mechanism in new 
cathode materials – metal organic frameworks (MIL-53), organics, 
nanophosphates, oxysulfides

E.g., Li4C6O6 + 2Li-> Li6C6O6
Li salt of tetrahydroxybenzoquinone 

4‐

P. Poizot, 
J. –M Tarascon



Electrolyte

Lithium metal 
plates with 
copper mesh

Separator

LiCoO2/Carbon 
with binder and 
Aluminum mesh

No electrolyte:
Metal, LiCoO2

Separator

FUTURE WORK

Resolution: 0.05 mm (target: 1‐2 µm) Image of the Electrolyte

With A. Jershow, NYU, S. Harris, GM

1. Imaging of LiBs (Li metal versus LiCoO2)

2. Insitu NMR: Effect of high rates; 
investigation of composite 
electrodes (cathode mixtures etc.)
3. Si, conversion reactions
4. LiM1-xM’PO4
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