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Barriers: low cycle life, abuse tolerance and limited operating temperatures
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Our previous studies have shown oxygen loss from active materials (left) and the surface of
active materials (right) can greatly influence cycle life and rate capability.

¢

The processes associated with the interfacial instability between active materials and
electrolyte are not understood 2



Research Objectives:

» To develop fundamental understanding of processes associated with the
interfacial instability between active materials and electrolyte

» To design positive electrodes with stable electrode-electrolyte interface with
improved cycling performance and rate capability in wider operating
temperatures

Research Approaches:

» Probing the surface chemistry of positive electrode materials before and after
cycling using surface-sensitive electron microscopy, X-ray photoelectron
spectroscopy and electron-yield X-ray adsorption spectroscopy.

» Studying the bulk structure of positive electrode materials before and after
cycling using synchrotron X-ray diffraction and transmission X-ray absorption
spectroscopy.

» Correlating surface chemistry and bulk structure information with
electrochemical performance characteristics such as capacity retention and rate
capability to determine the origin of surface instability.




Research Approaches:

Surface Chemistry: Electron microscopy Bulk Structure: Synchrotron X-ray diffraction
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Results: Probing the origin of surface instability of Li,CoO, and the enhanced stability
associated with “AlIPO,” surface modification - |
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identified phases present in the “AIPO,” coating
> Al-rich surface regions: LiAlO,
» P-rich surface regions: Li;PO,
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Results: Probing the origin of surface instability of Li, CoO, and the enhanced stability
associated with “AlIPO,” surface modification - i

XPS-I: the changes in the surface metal chemistry of bare and “AIPO,”-coated electrodes during cycling
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(c) Bare 20 cycles

(d) Coated 20 cycles
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Bare: No apparent changes for Co chemistry
Coated: Surface coating promote Co-containing and Al-containing fluorides and/or oxyfluorides formation



Results: Probing the origin of surface instability of Li, CoO, and the enhanced stability

associated with “AlPO,” surface modification - llla

Electron-Yield XAS-I: the changes in the surface metal chemistry of bare and “AlPO,”-coated electrodes

during cycling
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» Bare: a small change after cycling.
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» Coated: a significant change in after cycling, which is consistent with the formation of surface CoF,

and/or oxyfluorides.
> EXAFS:

» Bare: reduction in the amplitude of Co-Co contribution after cycling
» the origin: surface structural damage
» Coated: reduction in the amplitude of Co-Co contribution after cycling

» the origin: the formation of CoF, and/or oxyfluorides as suggested by theoretical simulation of a

mixture of LiCoO, and CoF,
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Results: Probing the origin of surface instability of Li, CoO, and the enhanced stability
associated with “AlIPO,” surface modification - llib

Transmission and Electron-Yield XAS-I: the changes in the bulk and surface metal chemistry of bare and

“AlPO,”-coated electrodes during cycling

Mode | Ne, Reoo G2 co-Co Neoco Reo-co | O%coco

Sample (A) (103A2) (A) (103A2)
Bare pristine Bulk 6.1+0.3 1.922 3.7%0.5 5.9+0.3 | 2.820 | 2.5%+0.3
Bare 20 cycles Bulk 5.8+0.3 1.914 4.0%0.6 6.2+0.3 | 2.826 | 4.1+0.4
Coated pristine Bulk 6.0+0.3 1.927 3.6%£0.5 6.1+0.3 | 2.818 | 2.5+0.3
Coated 20 cycles Bulk 6.0+£0.3 1.926 4.2+0.5 5.8+0.3 | 2.823 | 2.9+0.3
Bare pristine Surface | 6.1%x0.3 1.929 4.520.5 5.9+0.3 | 2.821 | 3.210.3
Bare 20 cycles Surface | 5.5%0.3 1.916 4.6x0.6 5.2+0.3 |2.823 | 3.7+04
Coated pristine Surface | 5.8%0.3 1.928 3.810.5 5.7£0.3 | 2.818 | 2.810.3
Coated 20 cycles Surface | 5.3%0.2 1.924 4.9+0.5 4.8+0.2 | 2.826 | 3.5+0.3
XRD (LiCoO,) N/A 6 Co-O 1.918 6 Co-Co | 2.811

XRD (CoF,) N/A 2 Co-F 2.032 2 Co-Co | 3.180

4 Co-F 2.046

> Bare after 20 cycles: bulk structure has higher degree of disorder relative to pristine.
» Coated after 20 cycles: bulk structure retained same degree of disorder as pristine.

» Coated after 20 cycles: reduction in Co-Co coordination is consistent with the formation of CoF,-like species




Results: Probing the origin of surface instability of Li, CoO, and the enhanced stability
associated with “AlIPO,” surface modification - IV

XPS-II: the changes in the surface oxygen chemistry of bare and “AlPO,”-coated electrodes during cycling
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Bare: surface O environments dominated by those of resistant organic species such as OP(OR); and
ROCO,Li with high oxygen binding energies
Coated: surface O environments dominated by P,0. and those of oxyfluoride species



Results: Probing the origin of surface instability of Li, CoO, and the enhanced stability
associated with “AlIPO,” surface modification - V

XPS-IlI: the changes in the surface fluorine chemistry of bare and “AlPO,”-coated electrodes during cycling
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Bare: surface F environments dominated by LiF
Coated: surface F environments dominated by Co- and Al-containing oxyfluorides and less LiF



Results: Probing the origin of surface instability of Li, CoO, and the enhanced stability
associated with “AlIPO,” surface modification - VI

XRD-I: the changes in the bulk structure of bare and “AIPO,”-coated electrodes during cycling
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Bare: bulk structure damage = oxygen loss
Coated: bulk structure intact



Results: Probing the origin of surface instability of Li, CoO, and the enhanced stability

associated with “AlIPO,” surface modification - VIi

Hypothesis: the origin of enhanced stability of “AIPO,”-coated electrodes during cycling

Bare electrode

Li,PO,

LiAl,Co, 0,

Coated electrode

Decomposition products of organic solvent
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Bare:

»Forms highly resistant organic species on
the surface, significantly increase the
polarization.

» Co dissolution and oxygen loss lead to
structural instability.

“AlPO,”-Coated:
» Forms surface Co-Al-O-F oxyfluorides by
reacting with HF.

» surface Co-Al-O-F oxyfluorides reduces
the amount of resistant surface organic
species and LiF, and reduces further Co
dissolution and bulk oxygen loss.



Results: Probing the origin of surface instability of Li, CoO, and the enhanced stability
associated with “AlIPO,” surface modification - VIIi

Test of Hypothesis: mixing “Al,0,” in the positive electrode should lead to enhanced stability during cycling
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Results: Probing the effects of synthesis conditions and surface chemistry of LiNi, :Mn, .0, on
the cycling performance and rate capability - |

Synthesis conditions of LiNi, ;Mn, .0, and phase identification by XRD

1.0 M TM metal (NiNO; : MnNO; =1 :1) 50 ml

1.2 M TMAH
(tetramethyl ammonium hydroxide ) at 20 °C (N,)

with NH,OH sol. —_—
100 mi

Nij sMn, 5(OH),

at 680 °C for 12 h (Air)

A\ 4

NiMnO,

Li,CO, -
(NiMnO; : Li,CO, = 1.00 : 1.03) 1000 °C for 30min
Quenched @ 1000°C

mixing with mortar
and pestle and v
then pelletizing Quenched LiNi, ;Mn, .0,

Annealing @ 700°C
l for 12hr

Yabuuchi and Shao-Horn et al,

Electrochemistry Communications,
submitted Annealed LiNi, sMn, .O,



Results: Probing the effects of synthesis conditions and surface chemistry of LiNi, :Mn, .0, on
the cycling performance and rate capability - Il

Electrochemical testing-I: Capacity retention during cycling
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The annealed LiNi, ;Mn, :O, has better capacity retention during cycling to 4.4 and 4.6 V vs. Li in comparisor
to quenched LiNi, :Mn, :O,

Yabuuchi and Shao-Horn et al, Electrochemistry Communications, submitted



Results: Probing the effects of synthesis conditions and surface chemistry of LiNi, :Mn, .0, on
the cycling performance and rate capability - lll
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Electrochemical testing-ll: Rate capability at 30 °C and 55 °C
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Annealed LiNi, :Mn, ;0, has much better rate capability at 30 °C and 55 °C in comparison to quenched LiNi, :Mn, :O,
Annealed LiNi, sMn, 0, exhibits >110 mAh/g at a rate of 8 C.

Yabuuchi and Shao-Horn et al, Electrochemistry Communications, submitted



Results: Probing the effects of synthesis conditions and surface chemistry of LiNi, :Mn, .0, on
the cycling performance and rate capability - IV

XPS-1 and XRD-I: Surface carbon and oxygen chemistry of quenched and annealed LiNi, ;Mn, .O,
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Annealed LiNi, ;Mn, O, has less surface Li,CO; in comparison to quenched LiNi, ;Mn, :O,
Annealing reduces surface Li,CO;.

Yabuuchi and Shao-Horn et al, Electrochemistry Communications, submitted



Results: Probing the effects of synthesis conditions and surface chemistry of LiNi, :Mn, .0, on
the cycling performance and rate capability - V

XPS-11: Surface metal chemistry of quenched and annealed LiNi, ;Mn, .O,

Hypothesis: the origin in the difference of surface chemistry of quenched and annealed LiNi, ;Mn, .0,
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» Increased binding energy of Mn upon annealing
»due to oxidation of Mn3* to Mn**

» Ni-rich surface with Ni/Mn ratio greater than 1

> The extent of Ni-enrichment on the surface is
reduced during annealing

Hypothesis:

At 1000 °C, partial decomposition of LiNi, ;Mn,, O, near
the surface

2 xLi,0 + Liy,;oNigs**Mn*y 5 5, Mn3*,, O,

» Formation of the Li-poor phase (or metal-rich phase)
» Some Mn ions are reduced to 3+.
»Li,O changes into Li,CO, during quenching

Annealing process at 700 °C; Li,CO, near the surface
reacts with Li poor phase
» Formation of a nearly stoichiometric phase —
> Li*0.gNi*0 1)3p(Li*0 1Ni%*0,4MN* 5)3,0,
» Less lithium carbonate
»oxidized Mn into 4+
» Reduced Ni occupation in the Li layer from XRD (~2%)

Yabuuchi and Shao-Horn et al, Electrochemistry Communications, submitted



Summary

Probing the origin of surface instability of Li CoO,
and the enhanced stability associated with “AlPO,”

surface modification

Decomposition products of organic solvent
ie: ROCO,Li, OP(OR); \
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Oxygen loss
Bare electrode Oxygen loss
Bare 20 cycles
Li;PO, HF LizPO,
e
__;_.' / LiF
L )
LiAl,Co,.,0,
Co- AI O-F
Coated electrode
Coated 20 cycles

» Coating promotes the formation of surface Co-Al-O-F
oxyfluorides.

» Surface Co-Al-O-F oxyfluorides reduces the amount of
resistant surface organic species and LiF, and reduces
further Co dissolution and bulk oxygen loss = enhanced
capacity retention during cycling to high voltages

Probing the effects of synthesis conditions and
surface chemistry of LiNi, ;Mn, O, on the cycling
performance and rate capability
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» Annealed LiNi, ;Mn, 0, has much improved capacity
retention and rate capability relative to quenched

»The presence of surface Mn3* species on the quenched
can lead to high-resistance surface films, which reduces
capacity retention and rate capability during cycling.



Ongoing and Planned Activities

» Further probing the formation mechanism of metal oxyfluoride-like species on lithium storage
oxide surfaces during electrochemical cycling and test the hypothesis that the presence of surfac
e metal fluorites protects the surface and suppress the growth of resistive, high-impedance laye
r during cycling.

»Investigating the role of the surface chemistry of LiNi, sMn, :O, obtained from different proces
sing conditions on the rate capability, reversible capacity and cycling stability of LiNi, :Mn, O, el
ectrodes.

»Studying functionalized carbon nanotube based positive electrodes for high-power application
s. We have recently assembled functionalized multiwall carbon nanotube (MWNTs) thin film ele

ctrodes, where the thickness from the nanometer to micrometer scale can be controlled. Such el
ectrodes have exhibited high specific and volumetric capacitance in aqueous environment (Lee a
nd Shao-Horn et al., JACS 2009).

» XPS and synchrotron X-ray absorption data of oxide-based and carbon nanotube-based
electrode materials will be collected in collaboration with Dr. A. Mansour at NSWC of the
Carderock Division under the BATT program.
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