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Automotive industry needs to meet CO,/fuel economy
regulations
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Thermoelectrics can lower fuel consumption in cars
by converting waste heat to electricity

Vehicle Operation
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Thermoelectrics competes with

other waste heat recovery techniques
* Bottoming cycles (Rankine, Brayton)
* Turbocompounding

Graphic adapted from http://www.osti.gov/fcvt/HETE2004/Stabler.pdf
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Thermoelectric generators transform waste heat into

electrical power
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Several automotive locations are being considered for
TE generators
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Different locations in the car require different TE
materials
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Corning has multiscale TE modeling activities
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* Objectives

— To provide guidance and help understanding for empirical research
and measure progress

— To guide requirements for Corning’s advanced materials
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Model developed and validated with experiment data

Design Knobs Prescribed Conditions

» Thermoelectric material properties » TEG Location — temperature, space
» Geometry * Driving Conditions

» System Integration

IAT= 100 °C
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cycles pose challenges
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Model developed and validated with experiment data

Design Knobs
» Thermoelectric material properties

» Geometry
» System Integration

Model validated with Experiment

IAT= 100 °C
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High performance n-type and p-type SKDs
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Developed high performance SKD materials:
n-type: ZTmax = 1.46 for at 800-850K
p-type: ZTMax = 1.02 at 700-750K
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Material is the key, but heat exchanger design,
contact resistance can degrade TEG performance
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Heat exchanger design is important:
There is a trade-off between generated power and backpressure
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Contact resistance is a key parameter to improve
system efficiency
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Expected performance with our material, optimized heat
exchanger and good contact resistances
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« Exhaust temperature and mass flow rate are key to TE power output and
efficiency.

« They are determined by drive conditions
« At 65 mph, 500W can be expected at post-aftertreatment location.
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Conclusions

- Key improvements in addition to material ZT and
temperature range are needed to achieve targeted fuel
savings:

— Reduction in thermal and electric contact resistances

— Light weight, low backpressure and high efficiency heat
exchanger

» Hot side temperature is crucial for better efficiency
— Drive cycle affects exhaust temperature
— TEG location determines hot-side temperature

Corning is committed to deliver high quality TE elements.
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